BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 10516311)

  • 1. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina.
    Rohrer B; Korenbrot JI; LaVail MM; Reichardt LF; Xu B
    J Neurosci; 1999 Oct; 19(20):8919-30. PubMed ID: 10516311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene dosage effect of the TrkB receptor on rod physiology and biochemistry in juvenile mouse retina.
    Rohrer B
    Mol Vis; 2001 Dec; 7():288-96. PubMed ID: 11754334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing inner retinal circuits in the rod pathway: a comparison of c-fos activation in mutant mice.
    Hanzlicek BW; Peachey NS; Grimm C; Hagstrom SA; Ball SL
    Vis Neurosci; 2004; 21(6):873-81. PubMed ID: 15733342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cone ERG Changes During Light Adaptation in Two All-Cone Mutant Mice: Implications for Rod-Cone Pathway Interactions.
    Bush RA; Tanikawa A; Zeng Y; Sieving PA
    Invest Ophthalmol Vis Sci; 2019 Aug; 60(10):3680-3688. PubMed ID: 31469895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal TrkB receptors regulate neural development in the inner, but not outer, retina.
    Grishanin RN; Yang H; Liu X; Donohue-Rolfe K; Nune GC; Zang K; Xu B; Duncan JL; Lavail MM; Copenhagen DR; Reichardt LF
    Mol Cell Neurosci; 2008 Jul; 38(3):431-43. PubMed ID: 18511296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retarded outer segment development in TrkB knockout mouse retina organ culture.
    Rohrer B; Ogilvie JM
    Mol Vis; 2003 Jan; 9():18-23. PubMed ID: 12552255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal expression of AP-1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina.
    He L; Campbell ML; Srivastava D; Blocker YS; Harris JR; Swaroop A; Fox DA
    Mol Vis; 1998 Dec; 4():32. PubMed ID: 9873070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation.
    Chaney SY; Mukherjee S; Giddabasappa A; Rueda EM; Hamilton WR; Johnson JE; Fox DA
    Mol Vis; 2016; 22():1468-1489. PubMed ID: 28050121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The retina of c-fos-/- mice: electrophysiologic, morphologic and biochemical aspects.
    Kueng-Hitz N; Grimm C; Lansel N; Hafezi F; He L; Fox DA; Remé CE; Niemeyer G; Wenzel A
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):909-16. PubMed ID: 10711713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionally intact glutamate-mediated signaling in bipolar cells of the TRKB knockout mouse retina.
    Rohrer B; Blanco R; Marc RE; Lloyd MB; Bok D; Schneeweis DM; Reichardt LF
    Vis Neurosci; 2004; 21(5):703-13. PubMed ID: 15683558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice.
    Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T
    Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa.
    Streichert LC; Birnbach CD; Reh TA
    J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors.
    Wahlin KJ; Campochiaro PA; Zack DJ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):927-36. PubMed ID: 10711715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of truncated rhodopsin and its effects on rod function and degeneration.
    Lee ES; Flannery JG
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2868-76. PubMed ID: 17525223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electroretinogram of the rhodopsin knockout mouse.
    Toda K; Bush RA; Humphries P; Sieving PA
    Vis Neurosci; 1999; 16(2):391-8. PubMed ID: 10367972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant expression of c-Fos accompanies photoreceptor cell death in the rd mouse.
    Rich KA; Zhan Y; Blanks JC
    J Neurobiol; 1997 Jun; 32(6):593-612. PubMed ID: 9183740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotrophin receptor TrkB activation is not required for the postnatal survival of retinal ganglion cells in vivo.
    Rohrer B; LaVail MM; Jones KR; Reichardt LF
    Exp Neurol; 2001 Nov; 172(1):81-91. PubMed ID: 11681842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina.
    Zhu X; Wu K; Rife L; Cawley NX; Brown B; Adams T; Teofilo K; Lillo C; Williams DS; Loh YP; Craft CM
    J Neurochem; 2005 Dec; 95(5):1351-62. PubMed ID: 16219026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive "light" adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss.
    Sieving PA; Fowler ML; Bush RA; Machida S; Calvert PD; Green DG; Makino CL; McHenry CL
    J Neurosci; 2001 Aug; 21(15):5449-60. PubMed ID: 11466416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.