BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10517005)

  • 41. Novel 17 substituted pregnadiene derivatives as 5 alpha-reductase inhibitors and their binding affinity for the androgen receptor.
    Cabeza M; Flores E; Heuze I; Sánchez M; Bratoeff E; Ramírez E; Francolugo VA
    Chem Pharm Bull (Tokyo); 2004 May; 52(5):535-9. PubMed ID: 15133203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New ester derivatives of dehydroepiandrosterone as 5α-reductase inhibitors.
    Arellano Y; Bratoeff E; Garrido M; Soriano J; Heuze Y; Cabeza M
    Steroids; 2011 Nov; 76(12):1241-6. PubMed ID: 21729714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and biological activity of a novel series of nonsteroidal, peripherally selective androgen receptor antagonists derived from 1,2-dihydropyridono[5,6-g]quinolines.
    Hamann LG; Higuchi RI; Zhi L; Edwards JP; Wang XN; Marschke KB; Kong JW; Farmer LJ; Jones TK
    J Med Chem; 1998 Feb; 41(4):623-39. PubMed ID: 9484511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Androgen receptor binding and antiandrogenic activity of some 4,5-secoandrostanes and ring B cyclopropanoandrostanes.
    Stárka L; Hampl R; Kasal A; Kohout L
    J Steroid Biochem; 1982 Sep; 17(3):331-4. PubMed ID: 6215537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pharmacological profile of 9,11-dehydrocortexolone 17alpha-butyrate (CB-03-04), a new androgen antagonist with antigonadotropic activity.
    Celasco G; Moroa L; Bozzella R; Ferraboschi P; Bartorelli L; Di Marco R; Quattrocchi C; Nicoletti F
    Arzneimittelforschung; 2005; 55(10):581-7. PubMed ID: 16294504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth inhibition of human prostate cells in vitro by novel inhibitors of androgen synthesis.
    Klus GT; Nakamura J; Li JS; Ling YZ; Son C; Kemppainen JA; Wilson EM; Brodie AM
    Cancer Res; 1996 Nov; 56(21):4956-64. PubMed ID: 8895750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 5 beta- and 5 alpha-reductases for 4-ene-3-ketosteroids in golden hamster ovaries at different stages of development.
    Tsuji M; Terada N; Sato B; Matsumoto K
    J Steroid Biochem; 1982 Feb; 16(2):207-13. PubMed ID: 7078160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathways and genes involved in steroid hormone metabolism in male pigs: a review and update.
    Robic A; Faraut T; Prunier A
    J Steroid Biochem Mol Biol; 2014 Mar; 140():44-55. PubMed ID: 24239507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of 5α-reductase activity and isoenzymes in human abdominal adipose tissues.
    Fouad Mansour M; Pelletier M; Tchernof A
    J Steroid Biochem Mol Biol; 2016 Jul; 161():45-53. PubMed ID: 26855069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Postnatal growth of mouse seminal vesicle is dependent on 5 alpha-dihydrotestosterone.
    Shima H; Tsuji M; Young P; Cunha GR
    Endocrinology; 1990 Dec; 127(6):3222-33. PubMed ID: 2249647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pharmacological induction of 5 alpha-reductase deficiency in the rat: separation of testosterone-mediated and 5 alpha-dihydrotestosterone-mediated effects.
    Blohm TR; Laughlin ME; Benson HD; Johnston JO; Wright CL; Schatzman GL; Weintraub PM
    Endocrinology; 1986 Sep; 119(3):959-66. PubMed ID: 3732173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prolactin influences upon androgen action in male accessory sex organs.
    Thomas JA; Keenan EJ
    Adv Sex Horm Res; 1976; 2():425-70. PubMed ID: 189591
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Opposite effects of dihydrotestosterone and estradiol on apoptosis in the anterior pituitary gland from male rats.
    Magri ML; Gottardo MF; Zárate S; Eijo G; Ferraris J; Jaita G; Ayala MM; Candolfi M; Pisera D; Seilicovich A
    Endocrine; 2016 Mar; 51(3):506-16. PubMed ID: 26296379
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antiandrogenic steroidal sulfonylpyrazoles.
    Christiansen RG; Bell MR; D'Ambra TE; Mallamo JP; Herrmann JL; Ackerman JH; Opalka CJ; Kullnig RK; Winneker RC; Snyder BW
    J Med Chem; 1990 Aug; 33(8):2094-100. PubMed ID: 2374140
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antiandrogen. IV. C-17 spiro 2-oxasteroids.
    Koizumi N; Takegawa S; Mieda M; Shibata K
    Chem Pharm Bull (Tokyo); 1996 Nov; 44(11):2162-4. PubMed ID: 8945781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Testosterone regulates levels of cystic fibrosis transmembrane regulator, adenylate cyclase, and cAMP in the seminal vesicles of orchidectomized rats.
    Ramli NS; Giribabu N; Muniandy S; Salleh N
    Theriogenology; 2016 Jan; 85(2):238-46. PubMed ID: 26483308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aromatic esters of progesterone as 5alpha-reductase and prostate growth inhibitors.
    Bratoeff E; Segura T; Recillas S; Carrizales E; Palacios A; Heuze I; Cabeza M
    J Enzyme Inhib Med Chem; 2009 Jun; 24(3):655-62. PubMed ID: 18825535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of a 15-day screening assay using intact male rats for identifying antiandrogens.
    O'Connor JC; Frame SR; Ladics GS
    Toxicol Sci; 2002 Sep; 69(1):92-108. PubMed ID: 12215663
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deficiency of 5 alpha-steroid formation in guinea pig ovaries compared with immature rat and hamster ovaries.
    Nagareda T; Takeyama M; Matsumoto K
    J Steroid Biochem; 1984 Oct; 21(4):477-8. PubMed ID: 6492806
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relative potency of antiandrogens with reference to intracellular testosterone in the rat prostate.
    Kondo Y; Homma Y; Aso Y; Kawabe K; Mieda M; Takahashi H
    Prostate; 1996 Sep; 29(3):146-52. PubMed ID: 8827082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.