These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10517145)

  • 1. A minisonicator to rapidly disrupt bacterial spores for DNA analysis.
    Belgrader P; Hansford D; Kovacs GT; Venkateswaran K; Mariella R; Milanovich F; Nasarabadi S; Okuzumi M; Pourahmadi F; Northrup MA
    Anal Chem; 1999 Oct; 71(19):4232-6. PubMed ID: 10517145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis.
    Marentis TC; Kusler B; Yaralioglu GG; Liu S; Haeggström EO; Khuri-Yakub BT
    Ultrasound Med Biol; 2005 Sep; 31(9):1265-77. PubMed ID: 16176793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR.
    Ryu C; Lee K; Yoo C; Seong WK; Oh HB
    Microbiol Immunol; 2003; 47(10):693-9. PubMed ID: 14605435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and effective detection of anthrax spores in soil by PCR.
    Cheun HI; Makino SI; Watarai M; Erdenebaatar J; Kawamoto K; Uchida I
    J Appl Microbiol; 2003; 95(4):728-33. PubMed ID: 12969286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and fate of Bacillus anthracis (Sterne) vegetative cells and spores added to bulk tank milk.
    Perdue ML; Karns J; Higgins J; Van Kessel JA
    J Food Prot; 2003 Dec; 66(12):2349-54. PubMed ID: 14672236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular detection of anthrax spores on animal fibres.
    Levi K; Higham JL; Coates D; Hamlyn PF
    Lett Appl Microbiol; 2003; 36(6):418-22. PubMed ID: 12753252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of spores of Bacillus anthracis from environment using polymerase chain reaction.
    Alam SI; Agarwal GS; Kamboj DV; Rai GP; Singh L
    Indian J Exp Biol; 2003 Feb; 41(2):177-80. PubMed ID: 15255613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores.
    Makino S; Cheun HI
    J Microbiol Methods; 2003 May; 53(2):141-7. PubMed ID: 12654485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-automated bacterial spore detection system with micro-fluidic chips for aerosol collection, spore treatment and ICAN DNA detection.
    Inami H; Tsuge K; Matsuzawa M; Sasaki Y; Togashi S; Komano A; Seto Y
    Biosens Bioelectron; 2009 Jul; 24(11):3299-305. PubMed ID: 19450964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection.
    Bruno JG; Kiel JL
    Biosens Bioelectron; 1999 May; 14(5):457-64. PubMed ID: 10451913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples.
    Dauphin LA; Moser BD; Bowen MD
    J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of eleven commercial DNA extraction kits for real-time PCR detection of Bacillus anthracis spores in spiked dairy samples.
    Mertens K; Freund L; Schmoock G; Hänsel C; Melzer F; Elschner MC
    Int J Food Microbiol; 2014 Jan; 170():29-37. PubMed ID: 24291177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Bacillus anthracis PCR to simulated clinical samples.
    Rantakokko-Jalava K; Viljanen MK
    Clin Microbiol Infect; 2003 Oct; 9(10):1051-6. PubMed ID: 14616752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate.
    Saikaly PE; Barlaz MA; de Los Reyes FL
    Appl Environ Microbiol; 2007 Oct; 73(20):6557-65. PubMed ID: 17720820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR.
    Ellerbrok H; Nattermann H; Ozel M; Beutin L; Appel B; Pauli G
    FEMS Microbiol Lett; 2002 Aug; 214(1):51-9. PubMed ID: 12204372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of capsule-forming Bacillus anthracis spores with the PCR and a novel dual-probe hybridization format.
    Reif TC; Johns M; Pillai SD; Carl M
    Appl Environ Microbiol; 1994 May; 60(5):1622-5. PubMed ID: 8017940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of spores of Bacillus anthracis using the polymerase chain reaction.
    Carl M; Hawkins R; Coulson N; Lowe J; Robertson DL; Nelson WM; Titball RW; Woody JN
    J Infect Dis; 1992 Jun; 165(6):1145-8. PubMed ID: 1583336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct detection of Bacillus anthracis DNA in animals by polymerase chain reaction.
    Makino SI; Iinuma-Okada Y; Maruyama T; Ezaki T; Sasakawa C; Yoshikawa M
    J Clin Microbiol; 1993 Mar; 31(3):547-51. PubMed ID: 8458949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultra-high temperature flow-through capillary device for bacterial spore lysis.
    Hukari KW; Patel KD; Renzi RF; West JA
    Electrophoresis; 2010 Aug; 31(16):2804-12. PubMed ID: 20737447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples.
    Létant SE; Kane SR; Murphy GA; Alfaro TM; Hodges LR; Rose LJ; Raber E
    J Microbiol Methods; 2010 May; 81(2):200-2. PubMed ID: 20193716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.