These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10517207)

  • 1. Development of velocity profiles and retrograde flow in the porcine abdominal aorta under different haemodynamic conditions.
    Pedersen EM; Kim WY; Staalsen NH; Hasenkam JM; Nygaard H; Paulsen PK
    Scand Cardiovasc J; 1999; 33(4):206-14. PubMed ID: 10517207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies by pulsed Doppler ultrasonography of velocity fields downstream of graded stenoses on the abdominal aorta in pigs.
    Kim WY; Pedersen EM; Nygaard H; Sømod L; Hasenkam JM
    J Vasc Surg; 1994 Mar; 19(3):414-25. PubMed ID: 8126854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional visualization of velocity profiles in the porcine abdominal aortic trifurcation.
    Pedersen EM; Hjortdal JO; Hjortdal VE; Nygaard H; Hasenkam M; Paulsen PK
    J Vasc Surg; 1992 Jan; 15(1):194-204. PubMed ID: 1530825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation.
    Pedersen EM; Sung HW; Yoganathan AP
    J Biomech Eng; 1994 Aug; 116(3):347-54. PubMed ID: 7799638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new perivascular multi-element pulsed Doppler ultrasound system for in vivo studies of velocity fields and turbulent stresses in large vessels.
    Nygaard H; Hasenkam JM; Pedersen EM; Kim WY; Paulsen PK
    Med Biol Eng Comput; 1994 Jan; 32(1):55-62. PubMed ID: 8182963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood velocity profiles in the origin of the canine renal artery and their relevance in the localization and development of atherosclerosis.
    Yamamoto T; Tanaka H; Jones CJ; Lever MJ; Parker KH; Kimura A; Hiramatsu O; Ogasawara Y; Tsujioka K; Caro CC
    Arterioscler Thromb; 1992 May; 12(5):626-32. PubMed ID: 1576123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of blood flow velocity waveform in an animal model.
    Gudmundsson S; Eik-Nes S; Lingman G; Vernersson E; Grip A; Kristofferson K; Marsal K
    Echocardiography; 1990 Sep; 7(5):647-56. PubMed ID: 10150002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions.
    Moore JE; Ku DN
    J Biomech Eng; 1994 Aug; 116(3):337-46. PubMed ID: 7799637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions.
    Moore JE; Ku DN
    J Biomech Eng; 1994 Feb; 116(1):107-11. PubMed ID: 8189705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of exercise on hemodynamic conditions in the abdominal aorta.
    Taylor CA; Hughes TJ; Zarins CK
    J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic stress and experimental aortoiliac atherosclerosis.
    Bassiouny HS; Zarins CK; Kadowaki MH; Glagov S
    J Vasc Surg; 1994 Mar; 19(3):426-34. PubMed ID: 8126855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of vascular flow dynamics from intravascular ultrasound images.
    Chandran KB; Vonesh MJ; Roy A; Greenfield S; Kane B; Greene R; McPherson DD
    Med Eng Phys; 1996 Jun; 18(4):295-304. PubMed ID: 8782188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamics and wall shear rate in the abdominal aorta of dogs. Effects of vasoactive agents.
    White KC; Kavanaugh JF; Wang DM; Tarbell JM
    Circ Res; 1994 Oct; 75(4):637-49. PubMed ID: 7923610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta.
    Oyre S; Pedersen EM; Ringgaard S; Boesiger P; Paaske WP
    Eur J Vasc Endovasc Surg; 1997 Mar; 13(3):263-71. PubMed ID: 9129599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The shear rate at the wall in a symmetrically branched tube simulating the aortic bifurcation.
    Walburn FJ; Stein PD
    Biorheology; 1982; 19(1/2):307-16. PubMed ID: 6212090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative abdominal aortic flow measurements at controlled levels of ergometer exercise.
    Pedersen EM; Kozerke S; Ringgaard S; Scheidegger MB; Boesiger P
    Magn Reson Imaging; 1999 May; 17(4):489-94. PubMed ID: 10231175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wall motion velocities of abdominal aorta measured by tissue Doppler imaging in normal children.
    Yasuoka K; Harada K
    Pediatr Cardiol; 2005; 26(4):323-7. PubMed ID: 16374679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Velocity profiles in the normal human abdominal aorta: a comparison between ultrasound and magnetic resonance data.
    Vieli A; Moser U; Maier S; Meier D; Boesiger P
    Ultrasound Med Biol; 1989; 15(2):113-9. PubMed ID: 2658233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.