These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

662 related articles for article (PubMed ID: 10517866)

  • 1. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions.
    Blatch GL; Lässle M
    Bioessays; 1999 Nov; 21(11):932-9. PubMed ID: 10517866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold.
    Wilson CG; Kajander T; Regan L
    FEBS J; 2005 Jan; 272(1):166-79. PubMed ID: 15634341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif.
    Magliery TJ; Regan L
    J Mol Biol; 2004 Oct; 343(3):731-45. PubMed ID: 15465058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unexpected extended conformation for the third TPR motif of the peroxin PEX5 from Trypanosoma brucei.
    Kumar A; Roach C; Hirsh IS; Turley S; deWalque S; Michels PA; Hol WG
    J Mol Biol; 2001 Mar; 307(1):271-82. PubMed ID: 11243819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions.
    Das AK; Cohen PW; Barford D
    EMBO J; 1998 Mar; 17(5):1192-9. PubMed ID: 9482716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction.
    Murakami MT; Sforça ML; Neves JL; Paiva JH; Domingues MN; Pereira AL; Zeri AC; Benedetti CE
    Proteins; 2010 Dec; 78(16):3386-95. PubMed ID: 20848643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs.
    Strauss HM; Keller S
    Handb Exp Pharmacol; 2008; (186):461-82. PubMed ID: 18491064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.
    Kajander T; Cortajarena AL; Mochrie S; Regan L
    Acta Crystallogr D Biol Crystallogr; 2007 Jul; 63(Pt 7):800-11. PubMed ID: 17582171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a designed tetratricopeptide repeat module in complex with its peptide ligand.
    Cortajarena AL; Wang J; Regan L
    FEBS J; 2010 Feb; 277(4):1058-66. PubMed ID: 20089039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chaperone function of cyclophilin 40 maps to a cleft between the prolyl isomerase and tetratricopeptide repeat domains.
    Mok D; Allan RK; Carrello A; Wangoo K; Walkinshaw MD; Ratajczak T
    FEBS Lett; 2006 May; 580(11):2761-8. PubMed ID: 16650407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sel1-like repeat proteins in signal transduction.
    Mittl PR; Schneider-Brachert W
    Cell Signal; 2007 Jan; 19(1):20-31. PubMed ID: 16870393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of YrrB: a TPR protein with an unusual peptide-binding site.
    Han D; Oh J; Kim K; Lim H; Kim Y
    Biochem Biophys Res Commun; 2007 Sep; 360(4):784-90. PubMed ID: 17624311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural approach to a novel tandem repeat DNA-binding domain, STPR, by CD and NMR.
    Saito S; Aizawa T; Kawaguchi K; Yamaki T; Matsumoto D; Kamiya M; Kumaki Y; Mizuguchi M; Takiya S; Demura M; Kawano K
    Biochemistry; 2007 Feb; 46(7):1703-13. PubMed ID: 17249695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity.
    Beaufils S; Grossmann JG; Renault A; Bolanos-Garcia VM
    J Phys Chem B; 2008 Jul; 112(27):7984-91. PubMed ID: 18547097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TPR proteins: the versatile helix.
    D'Andrea LD; Regan L
    Trends Biochem Sci; 2003 Dec; 28(12):655-62. PubMed ID: 14659697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile TPR domains accommodate different modes of target protein recognition and function.
    Allan RK; Ratajczak T
    Cell Stress Chaperones; 2011 Jul; 16(4):353-67. PubMed ID: 21153002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sequence resembling a peroxisomal targeting sequence directs the interaction between the tetratricopeptide repeats of Ssn6 and the homeodomain of alpha 2.
    Smith RL; Johnson AD
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3901-6. PubMed ID: 10759558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module.
    Zeytuni N; Zarivach R
    Structure; 2012 Mar; 20(3):397-405. PubMed ID: 22404999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human U4/U6 snRNP recycling factor p110: mutational analysis reveals the function of the tetratricopeptide repeat domain in recycling.
    Medenbach J; Schreiner S; Liu S; Lührmann R; Bindereif A
    Mol Cell Biol; 2004 Sep; 24(17):7392-401. PubMed ID: 15314151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.