BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10518216)

  • 1. Directed evolution to bypass cyclin requirements for the Cdc28p cyclin-dependent kinase.
    Levine K; Kiang L; Jacobson MD; Fisher RP; Cross FR
    Mol Cell; 1999 Sep; 4(3):353-63. PubMed ID: 10518216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution allows bypass of the requirement for activation loop phosphorylation of the Cdc28 cyclin-dependent kinase.
    Cross FR; Levine K
    Mol Cell Biol; 1998 May; 18(5):2923-31. PubMed ID: 9566911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of the relationship between activation loop phosphorylation and cyclin binding in the activation of the Saccharomyces cerevisiae Cdc28p cyclin-dependent kinase.
    Cross FR; Levine K
    Genetics; 2000 Apr; 154(4):1549-59. PubMed ID: 10747052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start.
    Tyers M
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7772-6. PubMed ID: 8755551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1.
    Peter M; Herskowitz I
    Science; 1994 Aug; 265(5176):1228-31. PubMed ID: 8066461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p.
    Ahn SH; Tobe BT; Fitz Gerald JN; Anderson SL; Acurio A; Kron SJ
    Mol Biol Cell; 2001 Nov; 12(11):3589-600. PubMed ID: 11694591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation.
    Lanker S; Valdivieso MH; Wittenberg C
    Science; 1996 Mar; 271(5255):1597-601. PubMed ID: 8599119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at start, whereas Clb/Cdc28 kinases displace it from the promoter in G2.
    Koch C; Schleiffer A; Ammerer G; Nasmyth K
    Genes Dev; 1996 Jan; 10(2):129-41. PubMed ID: 8566747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G1 cyclin-dependent activation of p34CDC28 (Cdc28p) in vitro.
    Deshaies RJ; Kirschner M
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):1182-6. PubMed ID: 7862657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation.
    Nishizawa M; Kawasumi M; Fujino M; Toh-e A
    Mol Biol Cell; 1998 Sep; 9(9):2393-405. PubMed ID: 9725902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xenopus cyclin A1 can associate with Cdc28 in budding yeast, causing cell-cycle arrest with an abnormal distribution of nuclear DNA.
    Funakoshi M; Sikder H; Ebihara H; Irie K; Sugimoto K; Matsumoto K; Hunt T; Nishimoto T; Kobayashi H
    Genes Cells; 1997 May; 2(5):329-43. PubMed ID: 9280344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of new alleles of the cyclin-dependent kinase gene CDC28 with cyclin-specific functional and biochemical defects.
    Levine K; Oehlen LJ; Cross FR
    Mol Cell Biol; 1998 Jan; 18(1):290-302. PubMed ID: 9418876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linkage of replication to start by the Cdk inhibitor Sic1.
    Schneider BL; Yang QH; Futcher AB
    Science; 1996 Apr; 272(5261):560-2. PubMed ID: 8614808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between yeast Cdc6 protein and B-type cyclin/Cdc28 kinases.
    Elsasser S; Lou F; Wang B; Campbell JL; Jong A
    Mol Biol Cell; 1996 Nov; 7(11):1723-35. PubMed ID: 8930895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activating phosphorylation of the Saccharomyces cerevisiae cyclin-dependent kinase, cdc28p, precedes cyclin binding.
    Ross KE; Kaldis P; Solomon MJ
    Mol Biol Cell; 2000 May; 11(5):1597-609. PubMed ID: 10793138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast.
    Amon A
    EMBO J; 1997 May; 16(10):2693-702. PubMed ID: 9184216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle.
    Oehlen LJ; Cross FR
    Genes Dev; 1994 May; 8(9):1058-70. PubMed ID: 7926787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G1/S cyclin-dependent kinase regulates small GTPase Rho1p through phosphorylation of RhoGEF Tus1p in Saccharomyces cerevisiae.
    Kono K; Nogami S; Abe M; Nishizawa M; Morishita S; Pellman D; Ohya Y
    Mol Biol Cell; 2008 Apr; 19(4):1763-71. PubMed ID: 18256282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast Cln3 protein is an unstable activator of Cdc28.
    Cross FR; Blake CM
    Mol Cell Biol; 1993 Jun; 13(6):3266-71. PubMed ID: 8497251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle- and Cln2p-Cdc28p-dependent phosphorylation of the yeast Ste20p protein kinase.
    Wu C; Leeuw T; Leberer E; Thomas DY; Whiteway M
    J Biol Chem; 1998 Oct; 273(43):28107-15. PubMed ID: 9774429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.