These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10518216)

  • 21. Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo.
    Gartner A; Jovanović A; Jeoung DI; Bourlat S; Cross FR; Ammerer G
    Mol Cell Biol; 1998 Jul; 18(7):3681-91. PubMed ID: 9632750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins.
    Gerber MR; Farrell A; Deshaies RJ; Herskowitz I; Morgan DO
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4651-5. PubMed ID: 7753858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85.
    Espinoza FH; Ogas J; Herskowitz I; Morgan DO
    Science; 1994 Nov; 266(5189):1388-91. PubMed ID: 7973730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation of the septin cdc3 in g1 by the cdc28 kinase is essential for efficient septin ring disassembly.
    Tang CS; Reed SI
    Cell Cycle; 2002 Jan; 1(1):42-9. PubMed ID: 12429908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae.
    Li X; Cai M
    Mol Cell Biol; 1997 May; 17(5):2723-34. PubMed ID: 9111343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. G2 cyclins are required for the degradation of G1 cyclins in yeast.
    Blondel M; Mann C
    Nature; 1996 Nov; 384(6606):279-82. PubMed ID: 8918881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Cdc28 mutant uncouples G1 cyclin phosphorylation and ubiquitination from G1 cyclin proteolysis.
    Ceccarelli E; Mann C
    J Biol Chem; 2001 Nov; 276(45):41725-32. PubMed ID: 11527976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell size and Cln-Cdc28 complexes mediate entry into meiosis by modulating cell growth.
    Day A; Markwardt J; Delaguila R; Zhang J; Purnapatre K; Honigberg SM; Schneider BL
    Cell Cycle; 2004 Nov; 3(11):1433-9. PubMed ID: 15611626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae.
    Dirick L; Goetsch L; Ammerer G; Byers B
    Science; 1998 Sep; 281(5384):1854-7. PubMed ID: 9743499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of novel and conserved functional and structural elements of the G1 cyclin Cln3 important for interactions with the CDK Cdc28 in Saccharomyces cerevisiae.
    Miller ME; Cross FR; Groeger AL; Jameson KL
    Yeast; 2005 Oct; 22(13):1021-36. PubMed ID: 16200502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-function relationships of the yeast cyclin-dependent kinase Pho85.
    Santos RC; Waters NC; Creasy CL; Bergman LW
    Mol Cell Biol; 1995 Oct; 15(10):5482-91. PubMed ID: 7565699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway.
    Deshaies RJ; Chau V; Kirschner M
    EMBO J; 1995 Jan; 14(2):303-12. PubMed ID: 7835341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic analysis of Cln/Cdc28 regulation of cell morphogenesis in budding yeast.
    Benton BK; Tinkelenberg AH; Jean D; Plump SD; Cross FR
    EMBO J; 1993 Dec; 12(13):5267-75. PubMed ID: 8262069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cyclin-dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle.
    Drury LS; Perkins G; Diffley JF
    Curr Biol; 2000 Mar; 10(5):231-40. PubMed ID: 10712901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cks1 is required for G(1) cyclin-cyclin-dependent kinase activity in budding yeast.
    Reynard GJ; Reynolds W; Verma R; Deshaies RJ
    Mol Cell Biol; 2000 Aug; 20(16):5858-64. PubMed ID: 10913169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start.
    Yahya G; Parisi E; Flores A; Gallego C; Aldea M
    Mol Cell; 2014 Jan; 53(1):115-26. PubMed ID: 24374311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle.
    Amon A; Irniger S; Nasmyth K
    Cell; 1994 Jul; 77(7):1037-50. PubMed ID: 8020094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities.
    Verma R; Feldman RM; Deshaies RJ
    Mol Biol Cell; 1997 Aug; 8(8):1427-37. PubMed ID: 9285816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast.
    Minshull J; Straight A; Rudner AD; Dernburg AF; Belmont A; Murray AW
    Curr Biol; 1996 Dec; 6(12):1609-20. PubMed ID: 8994825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of meiotic rereplication block in Saccharomyces cerevisiae cells defective in Cdc28p regulation.
    Rice LM; Plakas C; Nickels JT
    Eukaryot Cell; 2005 Jan; 4(1):55-62. PubMed ID: 15643060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.