BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 10518520)

  • 1. A multiplasmid approach to preparing large libraries of polyketides.
    Xue Q; Ashley G; Hutchinson CR; Santi DV
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):11740-5. PubMed ID: 10518520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases.
    Tang L; Fu H; McDaniel R
    Chem Biol; 2000 Feb; 7(2):77-84. PubMed ID: 10662693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-free synthesis of polyketides by recombinant erythromycin polyketide synthases.
    Pieper R; Luo G; Cane DE; Khosla C
    Nature; 1995 Nov; 378(6554):263-6. PubMed ID: 7477343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered intermodular and intramodular polyketide synthase fusions.
    McDaniel R; Kao CM; Hwang SJ; Khosla C
    Chem Biol; 1997 Sep; 4(9):667-74. PubMed ID: 9331407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity.
    Tang L; McDaniel R
    Chem Biol; 2001 Jun; 8(6):547-55. PubMed ID: 11410374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel octaketide macrolides related to 6-deoxyerythronolide B provide evidence for iterative operation of the erythromycin polyketide synthase.
    Wilkinson B; Foster G; Rudd BA; Taylor NL; Blackaby AP; Sidebottom PJ; Cooper DJ; Dawson MJ; Buss AD; Gaisser S; Böhm IU; Rowe CJ; Cortés J; Leadlay PF; Staunton J
    Chem Biol; 2000 Feb; 7(2):111-7. PubMed ID: 10662692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae.
    Yoon YJ; Beck BJ; Kim BS; Kang HY; Reynolds KA; Sherman DH
    Chem Biol; 2002 Feb; 9(2):203-14. PubMed ID: 11880035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed integrating plasmids for engineering of the erythromycin gene cluster for expression in Streptomyces spp. and combinatorial biosynthesis.
    Fayed B; Ashford DA; Hashem AM; Amin MA; El Gazayerly ON; Gregory MA; Smith MC
    Appl Environ Microbiol; 2015 Dec; 81(24):8402-13. PubMed ID: 26431970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered biosynthesis of a complete macrolactone in a heterologous host.
    Kao CM; Katz L; Khosla C
    Science; 1994 Jul; 265(5171):509-12. PubMed ID: 8036492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products.
    McDaniel R; Thamchaipenet A; Gustafsson C; Fu H; Betlach M; Ashley G
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1846-51. PubMed ID: 10051557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the mechanism of chain termination switching in the picromycin/methymycin polyketide synthase.
    Tang L; Fu H; Betlach MC; McDaniel R
    Chem Biol; 1999 Aug; 6(8):553-8. PubMed ID: 10421766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides.
    Meurer G; Gerlitz M; Wendt-Pienkowski E; Vining LC; Rohr J; Hutchinson CR
    Chem Biol; 1997 Jun; 4(6):433-43. PubMed ID: 9224566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant polyketide synthesis in Streptomyces: engineering of improved host strains.
    Ziermann R; Betlach MC
    Biotechniques; 1999 Jan; 26(1):106-10. PubMed ID: 9894599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a polyketide with a longer chain by insertion of an extra module into the erythromycin-producing polyketide synthase.
    Rowe CJ; Böhm IU; Thomas IP; Wilkinson B; Rudd BA; Foster G; Blackaby AP; Sidebottom PJ; Roddis Y; Buss AD; Staunton J; Leadlay PF
    Chem Biol; 2001 May; 8(5):475-85. PubMed ID: 11358694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of the co-expression plasmids of fostriecin polyketide synthases and heterologous expression in Streptomyces.
    Su C; Zhao X; Qiu R; Tang L
    Pharm Biol; 2015 Feb; 53(2):269-74. PubMed ID: 25427408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythromycin biosynthesis: exploiting the catalytic versatility of the modular polyketide synthase.
    Luo G; Pieper R; Rosa A; Khosla C; Cane DE
    Bioorg Med Chem; 1996 Jul; 4(7):995-9. PubMed ID: 8831969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of starter units for erythromycin biosynthesis.
    Weissman KJ; Bycroft M; Staunton J; Leadlay PF
    Biochemistry; 1998 Aug; 37(31):11012-7. PubMed ID: 9692995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of extender units.
    Lau J; Fu H; Cane DE; Khosla C
    Biochemistry; 1999 Feb; 38(5):1643-51. PubMed ID: 9931032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of domains within megalomicin and erythromycin polyketide synthase modules responsible for differences in polyketide production levels in Escherichia coli.
    Murli S; Piagentini M; McDaniel R; Hutchinson CR
    Biochemistry; 2004 Dec; 43(50):15884-90. PubMed ID: 15595843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precursor-directed biosynthesis of 12-ethyl erythromycin.
    Jacobsen JR; Keatinge-Clay AT; Cane DE; Khosla C
    Bioorg Med Chem; 1998 Aug; 6(8):1171-7. PubMed ID: 9784859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.