BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 10518609)

  • 1. Imidazole-imidazole pair as a minor groove recognition motif for T:G mismatched base pairs.
    Yang XL; Hubbard RB; Lee M; Tao ZF; Sugiyama H; Wang AH
    Nucleic Acids Res; 1999 Nov; 27(21):4183-90. PubMed ID: 10518609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-dependent variation in DNA minor groove width dictates orientational preference of Hoechst 33258 in A-tract recognition: solution NMR structure of the 2:1 complex with d(CTTTTGCAAAAG)(2).
    Gavathiotis E; Sharman GJ; Searle MS
    Nucleic Acids Res; 2000 Feb; 28(3):728-35. PubMed ID: 10637324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of DNA minor groove binding diamidines that recognize GC base pair sequences: a dimeric-hinge interaction motif.
    Munde M; Ismail MA; Arafa R; Peixoto P; Collar CJ; Liu Y; Hu L; David-Cordonnier MH; Lansiaux A; Bailly C; Boykin DW; Wilson WD
    J Am Chem Soc; 2007 Nov; 129(44):13732-43. PubMed ID: 17935330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of mixed site DNA complexes with dimer-forming minor-groove binders by using electrospray ionization mass spectrometry: compound structure and DNA sequence effects.
    Laughlin S; Wang S; Kumar A; Farahat AA; Boykin DW; Wilson WD
    Chemistry; 2015 Mar; 21(14):5528-39. PubMed ID: 25703690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and synthesis of heterocyclic cations for specific DNA recognition: from AT-rich to mixed-base-pair DNA sequences.
    Chai Y; Paul A; Rettig M; Wilson WD; Boykin DW
    J Org Chem; 2014 Feb; 79(3):852-66. PubMed ID: 24422528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy.
    Tawa K; Knoll W
    Nucleic Acids Res; 2004; 32(8):2372-7. PubMed ID: 15115799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and replication of yDNA: a novel genetic set widened by benzo-homologation.
    Lu H; Lynch SR; Lee AH; Kool ET
    Chembiochem; 2009 Oct; 10(15):2530-8. PubMed ID: 19780073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural impact of DNA mismatches.
    Rossetti G; Dans PD; Gomez-Pinto I; Ivani I; Gonzalez C; Orozco M
    Nucleic Acids Res; 2015 Apr; 43(8):4309-21. PubMed ID: 25820425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Thiophene "Sigma-Hole" as a Concept for Preorganized, Specific Recognition of G⋅C Base Pairs in the DNA Minor Groove.
    Guo P; Paul A; Kumar A; Farahat AA; Kumar D; Wang S; Boykin DW; Wilson WD
    Chemistry; 2016 Oct; 22(43):15404-15412. PubMed ID: 27624927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercoiling DNA Locates Mismatches.
    Dittmore A; Brahmachari S; Takagi Y; Marko JF; Neuman KC
    Phys Rev Lett; 2017 Oct; 119(14):147801. PubMed ID: 29053317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, physicochemical properties, and hydrogen bonding of 4(5)-substituted 1-H-imidazole-2-carboxamide, a potential universal reader for DNA sequencing by recognition tunneling.
    Liang F; Li S; Lindsay S; Zhang P
    Chemistry; 2012 May; 18(19):5998-6007. PubMed ID: 22461259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration Waters Make Up for the Missing Third Hydrogen Bond in the A·T Base Pair.
    Mak CH
    ACS Phys Chem Au; 2024 Mar; 4(2):180-190. PubMed ID: 38560756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persuading the Non-canonical Intercalated-Motif DNA to Reveal Its Structure.
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202308352. PubMed ID: 37493349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Generation of Aldimine and Ketimine Tautomers of the Schiff Base Condensates of Amino Acids with Imidazole Aldehydes or of Imidazole Methanamines with Pyruvates-Isomeric Control with 2- vs. 4-Substituted Imidazoles.
    Brewer G; Brewer C; Butcher RJ; Zavalij P
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quercetin Exhibits Preferential Binding Interaction by Selectively Targeting HRAS1 I-Motif DNA-Forming Promoter Sequences.
    Bag S; Ghosal S; Mukherjee M; Pramanik G; Bhowmik S
    Langmuir; 2024 May; 40(19):10157-10170. PubMed ID: 38700902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DECODING COMPLEXITY IN BIOMOLECULAR RECOGNITION OF DNA I-MOTIFS.
    Yazdani K; Seshadri S; Tillo D; Vinson C; Schneekloth JS
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of DNA i-motifs via machine learning.
    Yang B; Guneri D; Yu H; Wright EP; Chen W; Waller ZAE; Ding Y
    Nucleic Acids Res; 2024 Mar; 52(5):2188-2197. PubMed ID: 38364855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Scaffolds from Two Flips: (α,β)/(β,γ) CH2/NH "Met-Im" Analogues of dTTP.
    Kadina AP; Kashemirov BA; Oertell K; Batra VK; Wilson SH; Goodman MF; McKenna CE
    Org Lett; 2015 Jun; 17(11):2586-9. PubMed ID: 25970636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells.
    Víšková P; Ištvánková E; Ryneš J; Džatko Š; Loja T; Živković ML; Rigo R; El-Khoury R; Serrano-Chacón I; Damha MJ; González C; Mergny JL; Foldynová-Trantírková S; Trantírek L
    Nat Commun; 2024 Mar; 15(1):1992. PubMed ID: 38443388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating DNA by polyamides to regulate transcription factor PU.1-DNA binding interactions.
    Liu B; Bashkin JK; Poon GMK; Wang S; Wang S; Wilson WD
    Biochimie; 2019 Dec; 167():1-11. PubMed ID: 31445072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.