BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 10518617)

  • 1. Characterization of a separate small domain derived from the 5' end of 23S rRNA of an alpha-proteobacterium.
    Zahn K; Inui M; Yukawa H
    Nucleic Acids Res; 1999 Nov; 27(21):4241-50. PubMed ID: 10518617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent mechanisms of 5' 23S rRNA IVS processing in the alpha-proteobacteria.
    Zahn K; Inui M; Yukawa H
    Nucleic Acids Res; 2000 Dec; 28(23):4623-33. PubMed ID: 11095671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase III processing of intervening sequences found in helix 9 of 23S rRNA in the alpha subclass of Proteobacteria.
    Evguenieva-Hackenberg E; Klug G
    J Bacteriol; 2000 Sep; 182(17):4719-29. PubMed ID: 10940010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNase E is involved in 5'-end 23S rRNA processing in alpha-Proteobacteria.
    Klein F; Evguenieva-Hackenberg E
    Biochem Biophys Res Commun; 2002 Dec; 299(5):780-6. PubMed ID: 12470646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly.
    Liiv A; Remme J
    J Mol Biol; 2004 Sep; 342(3):725-41. PubMed ID: 15342233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Escherichia coli 23S rRNAs containing processed and unprocessed intervening sequences from Salmonella typhimurium.
    Gregory ST; O'Connor M; Dahlberg AE
    Nucleic Acids Res; 1996 Dec; 24(24):4918-23. PubMed ID: 9016661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of intervening sequences in the genes for 23S rRNA and rRNA fragmentation among strains of the Salmonella reference collection B (SARB) and SARC sets.
    Pabbaraju K; Miller WL; Sanderson KE
    J Bacteriol; 2000 Apr; 182(7):1923-9. PubMed ID: 10714998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gateway role for rRNA precursors in ribosome assembly.
    Gutgsell NS; Jain C
    J Bacteriol; 2012 Dec; 194(24):6875-82. PubMed ID: 23065976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separate pathways for excision and processing of 16S and 23S rRNA from the primary rRNA operon transcript from the hyperthermophilic archaebacterium Sulfolobus acidocaldarius: similarities to eukaryotic rRNA processing.
    Durovic P; Dennis PP
    Mol Microbiol; 1994 Jul; 13(2):229-42. PubMed ID: 7527119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, expression and products of the ribosomal RNA operons of Rhodopseudomonas palustris No. 7.
    Zahn K; Inui M; Yukawa H
    Mol Genet Genomics; 2001 Jul; 265(5):778-90. PubMed ID: 11523795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atypical processing in domain III of 23S rRNA of Rhizobium leguminosarum ATCC 10004(T) at a position homologous to an rRNA fragmentation site in protozoa.
    Klein F; Samorski R; Klug G; Evguenieva-Hackenberg E
    J Bacteriol; 2002 Jun; 184(12):3176-85. PubMed ID: 12029033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequences around the fragmentation sites of the large subunit ribosomal RNA in the family Rhizobiaceae. 23S-like rRNAs in Rhizobiaceae.
    Selenska-Pobell S; Döring H
    Antonie Van Leeuwenhoek; 1998 Jan; 73(1):55-67. PubMed ID: 9602279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNase III cleavage is obligate for maturation but not for function of Escherichia coli pre-23S rRNA.
    King TC; Sirdeshmukh R; Schlessinger D
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):185-8. PubMed ID: 6364133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the three ribosomal RNA operons rrnA, rrnB, and rrnC, from Brucella melitensis.
    Bricker BJ
    Gene; 2000 Sep; 255(1):117-26. PubMed ID: 10974571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interaction between RNase III and the Escherichia coli ribosome.
    Allas U; Liiv A; Remme J
    BMC Mol Biol; 2003 Jun; 4():8. PubMed ID: 12814522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T.
    Li Z; Pandit S; Deutscher MP
    RNA; 1999 Jan; 5(1):139-46. PubMed ID: 9917073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The excision of intervening sequences from Salmonella 23S ribosomal RNA.
    Burgin AB; Parodos K; Lane DJ; Pace NR
    Cell; 1990 Feb; 60(3):405-14. PubMed ID: 2406020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2.
    Kitahara K; Kajiura A; Sato NS; Suzuki T
    Nucleic Acids Res; 2007; 35(12):4018-29. PubMed ID: 17553838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequences implicated in the processing of Thermus thermophilus HB8 23S rRNA.
    Hartmann RK; Ulbrich N; Erdmann VA
    Nucleic Acids Res; 1987 Oct; 15(19):7735-47. PubMed ID: 3313273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.