These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 10518733)

  • 1. The yeast Saccharomyces cerevisiae does not sequester chloride but can express a functional mammalian chloride channel.
    Coury LA; McGeoch JE; Guidotti G; Brodsky JL
    FEMS Microbiol Lett; 1999 Oct; 179(2):327-32. PubMed ID: 10518733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels.
    Davis-Kaplan SR; Askwith CC; Bengtzen AC; Radisky D; Kaplan J
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13641-5. PubMed ID: 9811853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The product of the gene GEF1 of Saccharomyces cerevisiae transports Cl- across the plasma membrane.
    López-Rodríguez A; Trejo AC; Coyne L; Halliwell RF; Miledi R; Martínez-Torres A
    FEMS Yeast Res; 2007 Dec; 7(8):1218-29. PubMed ID: 17662057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Gef1 protein of Saccharomyces cerevisiae is associated with chloride channel activity.
    Flis K; Bednarczyk P; Hordejuk R; Szewczyk A; Berest V; Dolowy K; Edelman A; Kurlandzka A
    Biochem Biophys Res Commun; 2002 Jun; 294(5):1144-50. PubMed ID: 12074596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of constitutive and acid-induced outwardly rectifying chloride currents in immortalized mouse distal tubular cells.
    Valinsky WC; Touyz RM; Shrier A
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):2007-2019. PubMed ID: 28483640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functioning of mammalian ClC-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Kha1p.
    Flis K; Hinzpeter A; Edelman A; Kurlandzka A
    Biochem J; 2005 Sep; 390(Pt 3):655-64. PubMed ID: 15926887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride secretion by porcine ciliary epithelium: New insight into species similarities and differences in aqueous humor formation.
    Kong CW; Li KK; To CH
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5428-36. PubMed ID: 17122133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional identification of a sarcolemmal chloride channel from bovine tracheal smooth muscle.
    Salvail D; Alioua A; Rousseau E
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1716-24. PubMed ID: 8944656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume-activated chloride currents from human fibroblasts: blockade by nimodipine.
    Chung MK; Kim HCh
    Gen Physiol Biophys; 2002 Mar; 21(1):85-101. PubMed ID: 12168729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of calcium transport stimulated by chlorothiazide in mouse distal convoluted tubule cells.
    Gesek FA; Friedman PA
    J Clin Invest; 1992 Aug; 90(2):429-38. PubMed ID: 1322939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae.
    Guardiani C; Magrì A; Karachitos A; Di Rosa MC; Reina S; Bodrenko I; Messina A; Kmita H; Ceccarelli M; De Pinto V
    Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):270-279. PubMed ID: 29408701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derepression of the high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae.
    Nieuwenhuis BJ; Borst-Pauwels GW
    Biochim Biophys Acta; 1984 Feb; 770(1):40-6. PubMed ID: 6365165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast.
    Schwarzer S; Kolacna L; Lichtenberg-Fraté H; Sychrova H; Ludwig J
    FEMS Yeast Res; 2008 May; 8(3):405-13. PubMed ID: 18248412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenanthrolines--a new class of CFTR chloride channel openers.
    Duszyk M; MacVinish L; Cuthbert AW
    Br J Pharmacol; 2001 Oct; 134(4):853-64. PubMed ID: 11606326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swelling-activated Cl- channels support Cl- secretion by bovine ciliary epithelium.
    Do CW; Peterson-Yantorno K; Civan MM
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2576-82. PubMed ID: 16723473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of phosphate into vacuoles of Saccharomyces cerevisiae.
    Kulakovskaya TV; Kulaev IS
    Microbiologia; 1997 Mar; 13(1):71-4. PubMed ID: 9106184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride transport across kidney epithelia through CLC chloride channels.
    Uchida S; Sasaki S; Marumo F
    Nihon Jinzo Gakkai Shi; 1996 Jul; 38(7):285-9. PubMed ID: 8741388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phosphate limitation of growth on the cell-wall and lipid composition of Saccharomyces cerevisiae.
    Ramsay AM; Douglas LJ
    J Gen Microbiol; 1979 Jan; 110(1):185-91. PubMed ID: 372489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae: the effect of different forms and concentrations of iodine on uptake and yeast growth.
    Osterc A; Fujs S; Raspor P; Stibilj V
    FEMS Yeast Res; 2009 Feb; 9(1):45-51. PubMed ID: 19133070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast CLC chloride channel is proteolytically processed by the furin-like protease Kex2p in the first extracellular loop.
    Wächter A; Schwappach B
    FEBS Lett; 2005 Feb; 579(5):1149-53. PubMed ID: 15710404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.