BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10519154)

  • 21. Characterization of L-arginine transport by pulmonary artery endothelial cells.
    Greene B; Pacitti AJ; Souba WW
    Am J Physiol; 1993 Apr; 264(4 Pt 1):L351-6. PubMed ID: 8476065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of L-arginine transport in undialysed chronic renal failure and continuous ambulatory peritoneal dialysis patients.
    Brunini TM; Roberts NB; Yaqoob MM; Ellory JC; Mann GE; Mendes Ribeiro AC
    Clin Exp Pharmacol Physiol; 2006; 33(1-2):114-8. PubMed ID: 16445709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of l-arginine transport in platelets by asymmetric dimethylarginine and N-monomethyl-l-arginine: effects of arterial hypertension.
    Brunini T; Moss M; Siqueira M; Meirelles L; Rozentul A; Mann G; Ellory J; Soares de Moura R; Mendes-Ribeiro A
    Clin Exp Pharmacol Physiol; 2004 Oct; 31(10):738-40. PubMed ID: 15554917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uremia, atherothrombosis and malnutrition: the role of L-arginine-nitric oxide pathway.
    Brunini TM; da Silva CD; Siqueira MA; Moss MB; Santos SF; Mendes-Ribeiro AC
    Cardiovasc Hematol Disord Drug Targets; 2006 Jun; 6(2):133-40. PubMed ID: 16787198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasma amino acid profile and L-arginine uptake in red blood cells from malnourished uremic patients.
    Reis PF; da Silva CD; Brunini TM; Moss MB; Siqueira MA; Santos SF; Roberts NB; Ellory JC; Mann GE; Mendes-Ribeiro AC
    J Ren Nutr; 2006 Oct; 16(4):325-31. PubMed ID: 17046616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of two leucine-sensitive lysine transport activities in human placental basal membrane.
    Furesz TC; Smith CH
    Placenta; 1997 Nov; 18(8):649-55. PubMed ID: 9364600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased L-arginine transport in a nitric oxide-producing metastatic colon cancer cell line.
    Cendan JC; Souba WW; Copeland EM; Lind DS
    Ann Surg Oncol; 1996 Sep; 3(5):501-8. PubMed ID: 8876894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The binding specificity of amino acid transport system y+L in human erythrocytes is altered by monovalent cations.
    Angelo S; Irarrázabal C; Devés R
    J Membr Biol; 1996 Sep; 153(1):37-44. PubMed ID: 8694905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of system y+ arginine transport capacity in differentiating human intestinal Caco-2 cells.
    Pan M; Malandro M; Stevens BR
    Am J Physiol; 1995 Apr; 268(4 Pt 1):G578-85. PubMed ID: 7733284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes.
    Devés R; Angelo S; Chávez P
    J Physiol; 1993 Aug; 468():753-66. PubMed ID: 8254535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acids as modulators of endothelium-derived nitric oxide.
    Kakoki M; Kim HS; Edgell CJ; Maeda N; Smithies O; Mattson DL
    Am J Physiol Renal Physiol; 2006 Aug; 291(2):F297-304. PubMed ID: 16571593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple pathways for cationic amino acid transport in rat seminiferous tubule cells.
    Cérec V; Piquet-Pellorce C; Aly HA; Touzalin AM; Jégou B; Bauché F
    Biol Reprod; 2007 Feb; 76(2):241-9. PubMed ID: 17065601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of a cationic amino acid transport system in the basolateral membrane of the cat salivary epithelium.
    Mann GE; Wilson SM; Yudilevich DL
    J Physiol; 1984 Jun; 351():123-34. PubMed ID: 6431084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of human erythrocyte choline transport in chronic renal failure.
    Riley SP; Talbot NJ; Ahmed MJ; Jouhal K; Hendry BM
    Nephrol Dial Transplant; 1997 Sep; 12(9):1921-7. PubMed ID: 9306344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arginine transport through system y(+)L in cultured human fibroblasts: normal phenotype of cells from LPI subjects.
    Dall'Asta V; Bussolati O; Sala R; Rotoli BM; Sebastio G; Sperandeo MP; Andria G; Gazzola GC
    Am J Physiol Cell Physiol; 2000 Dec; 279(6):C1829-37. PubMed ID: 11078698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. System y+L-like activities account for high and low amino-acid transport phenotypes in chicken erythrocytes.
    Vargas M; Devés R
    J Membr Biol; 2001 Oct; 183(3):183-93. PubMed ID: 11696860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrauterine growth retardation is associated with reduced activity and expression of the cationic amino acid transport systems y+/hCAT-1 and y+/hCAT-2B and lower activity of nitric oxide synthase in human umbilical vein endothelial cells.
    Casanello P; Sobrevia L
    Circ Res; 2002 Jul; 91(2):127-34. PubMed ID: 12142345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The transport of L-arginine in Chinese hamster ovary cells.
    Rotoli BM; Bussolati O; Dall'Asta V; Gazzola GC
    Biochem Biophys Res Commun; 1989 Nov; 164(3):1093-8. PubMed ID: 2590189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes.
    Bertran J; Magagnin S; Werner A; Markovich D; Biber J; Testar X; Zorzano A; Kühn LC; Palacin M; Murer H
    Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5606-10. PubMed ID: 1376926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. L-arginine transport and nitric oxide synthesis in human endothelial progenitor cells.
    Díaz-Pérez F; Radojkovic C; Aguilera V; Veas C; González M; Lamperti L; Escudero C; Aguayo C
    J Cardiovasc Pharmacol; 2012 Nov; 60(5):439-49. PubMed ID: 23143655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.