These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10519247)

  • 1. Cryptosporidium parvum: synchronized excystation in vitro and evaluation of sporozoite infectivity with a new lectin-based assay.
    Gut J; Nelson RG
    J Eukaryot Microbiol; 1999; 46(5):56S-57S. PubMed ID: 10519247
    [No Abstract]   [Full Text] [Related]  

  • 2. Cryptosporidium parvum: lectins mediate irreversible inhibition of sporozoite infectivity in vitro.
    Gut J; Nelson RG
    J Eukaryot Microbiol; 1999; 46(5):48S-49S. PubMed ID: 10519244
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of a Gal/GalNAc-specific sporozoite surface lectin in Cryptosporidium parvum-host cell interaction.
    Joe A; Hamer DH; Kelley MA; Pereira ME; Keusch GT; Tzipori S; Ward HD
    J Eukaryot Microbiol; 1994; 41(5):44S. PubMed ID: 7804243
    [No Abstract]   [Full Text] [Related]  

  • 4. Decrease in Cryptosporidium parvum oocyst infectivity in vitro by using the membrane filter dissolution method for recovering oocysts from water samples.
    Carreno RA; Pokorny NJ; Weir SC; Lee H; Trevors JT
    Appl Environ Microbiol; 2001 Jul; 67(7):3309-13. PubMed ID: 11425759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system.
    Borowski H; Thompson RC; Armstrong T; Clode PL
    Parasitology; 2010 Jan; 137(1):13-26. PubMed ID: 19691870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorine dioxide inactivation of Cryptosporidium parvum oocysts and bacterial spore indicators.
    Chauret CP; Radziminski CZ; Lepuil M; Creason R; Andrews RC
    Appl Environ Microbiol; 2001 Jul; 67(7):2993-3001. PubMed ID: 11425712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete development of Cryptosporidium parvum in MDBK cells.
    Villacorta I; de Graaf D; Charlier G; Peeters JE
    FEMS Microbiol Lett; 1996 Aug; 142(1):129-32. PubMed ID: 8759799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunofluorescence detection of Cryptosporidium parvum in Caco-2 cells: a new screening method for anticryptosporidial agents.
    Favennec L; Egraz-Bernard M; Comby E; Lemeteil D; Ballet JJ; Brasseur P
    J Eukaryot Microbiol; 1994; 41(5):39S. PubMed ID: 7804239
    [No Abstract]   [Full Text] [Related]  

  • 9. Cryptosporidium cell culture infectivity assay design.
    King BJ; Keegan AR; Robinson BS; Monis PT
    Parasitology; 2011 May; 138(6):671-81. PubMed ID: 21414244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete development of Cryptosporidium parvum in rabbit chondrocytes (VELI cells).
    Lacharme L; Villar V; Rojo-Vazquez FA; Suárez S
    Microbes Infect; 2004 May; 6(6):566-71. PubMed ID: 15158190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptosporidium excystation and invasion: getting to the guts of the matter.
    Smith HV; Nichols RA; Grimason AM
    Trends Parasitol; 2005 Mar; 21(3):133-42. PubMed ID: 15734661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of antiretroviral protease inhibitors alone, and in combination with paromomycin, on the excystation, invasion and in vitro development of Cryptosporidium parvum.
    Hommer V; Eichholz J; Petry F
    J Antimicrob Chemother; 2003 Sep; 52(3):359-64. PubMed ID: 12888587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro assays of maduramicin activity against Cryptosporidium parvum.
    Arrowood MJ; Xie LT; Hurd MR
    J Eukaryot Microbiol; 1994; 41(5):23S. PubMed ID: 7804225
    [No Abstract]   [Full Text] [Related]  

  • 14. Dissection of the hierarchy and synergism of the bile derived signal on Cryptosporidium parvum excystation and infectivity.
    King BJ; Keegan AR; Phillips R; Fanok S; Monis PT
    Parasitology; 2012 Oct; 139(12):1533-46. PubMed ID: 22894830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and potential use of a Cryptosporidium parvum virus (CPV) antigen for detecting C. parvum oocysts.
    Kniel KE; Higgins JA; Trout JM; Fayer R; Jenkins MC
    J Microbiol Methods; 2004 Aug; 58(2):189-95. PubMed ID: 15234516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of infectious Cryptosporidium oocysts by cell culture immunofluorescence assay: applicability to environmental samples.
    Schets FM; Engels GB; During M; de Roda Husman AM
    Appl Environ Microbiol; 2005 Nov; 71(11):6793-8. PubMed ID: 16269711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot-scale evaluation of UV reactors' efficacy against in vitro infectivity of Cryptosporidium parvum oocysts.
    Entrala E; Garin YJ; Meneceur P; Hayat M; Scherpereel G; Savin C; Féliers C; Derouin F
    FEMS Immunol Med Microbiol; 2007 Dec; 51(3):555-61. PubMed ID: 17941833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of UV-induced thymine dimers in individual Cryptosporidium parvum and Cryptosporidium hominis oocysts by immunofluorescence microscopy.
    Al-Adhami BH; Nichols RA; Kusel JR; O'Grady J; Smith HV
    Appl Environ Microbiol; 2007 Feb; 73(3):947-55. PubMed ID: 17012589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of two commercial disinfectants on the viability and infectivity of Cryptosporidium parvum oocysts.
    Castro-Hermida JA; Pors I; Méndez-Hermida F; Ares-Mazás E; Chartier C
    Vet J; 2006 Mar; 171(2):340-5. PubMed ID: 16490718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ozone inactivation of Cryptosporidium parvum in demand-free phosphate buffer determined by in vitro excystation and animal infectivity.
    Finch GR; Black EK; Gyürék L; Belosevic M
    Appl Environ Microbiol; 1993 Dec; 59(12):4203-10. PubMed ID: 8285711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.