These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10519695)

  • 21. Hyperthermia treatment planning guided applicator selection for sub-superficial head and neck tumors heating.
    Drizdal T; Paulides MM; van Holthe N; van Rhoon GC
    Int J Hyperthermia; 2018 Sep; 34(6):704-713. PubMed ID: 28931333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualization and registration of three-dimensional E-field distributions in annual-phased-array applicators.
    Wust P; Fähling H; Brünner M; Nadobny J; Jordan A; Felix R
    Med Phys; 1999 Apr; 26(4):653-9. PubMed ID: 10227369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstruction of applicator positions from multiple-view images for accurate superficial hyperthermia treatment planning.
    Drizdal T; Paulides MM; Linthorst M; van Rhoon GC
    Phys Med Biol; 2012 May; 57(9):2491-503. PubMed ID: 22493169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.
    Underwood HR; Peterson AF; Magin RL
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):146-53. PubMed ID: 1612617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The measurement of fringing fields in a radio-frequency hyperthermia array with emphasis on bolus size.
    Wiersma J; van Dijk JD; Sijbrands J; Schneider CJ
    Int J Hyperthermia; 1998; 14(6):535-51. PubMed ID: 9886661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep heating using a movable applicator phased array hyperthermia system. A preclinical feasibility study.
    Raskmark P; Hornsleth SN; Salling LN; Lindegaard JC; Overgaard J
    Acta Oncol; 1994; 33(4):451-5. PubMed ID: 8018379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of photogrammetry reconstruction for hyperthermia quality control measurements.
    Drizdal T; Paulides MM; Sumser K; Vrba D; Malena L; Vrba J; Fiser O; van Rhoon GC
    Phys Med; 2022 Sep; 101():87-94. PubMed ID: 35987024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and testing of SAR-visualizing phantoms for quality control in RF hyperthermia.
    Wust P; Fähling H; Jordan A; Nadobny J; Seebass M; Felix R
    Int J Hyperthermia; 1994; 10(1):127-42. PubMed ID: 8144984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature measurement errors with thermocouples inside 27 MHz current source interstitial hyperthermia applicators.
    Kaatee RS; Crezee H; Visser AG
    Phys Med Biol; 1999 Jun; 44(6):1499-511. PubMed ID: 10498519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal power deposition with finite-sized, planar hyperthermia applicator arrays.
    Tharp HS; Roemer RB
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):569-79. PubMed ID: 1601438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absorbed power distributions from two tilted waveguide applicators.
    Nilsson P; Larsson T; Persson B
    Int J Hyperthermia; 1985; 1(1):29-43. PubMed ID: 3837079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive radiofrequency hyperthermia-phased array system for improved cancer therapy: phantom target measurements.
    Fenn AJ; King GA
    Int J Hyperthermia; 1994; 10(2):189-208. PubMed ID: 8064180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators.
    Müller J; Hartmann J; Bert C
    Phys Med Biol; 2016 Apr; 61(7):2646-64. PubMed ID: 26976046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calculated power absorption patterns for hyperthermia applicators consisting of electric dipole arrays.
    Tsai CT; Durney CH; Christensen DA
    J Microw Power; 1984 Mar; 19(1):1-13. PubMed ID: 6564154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative evaluation of 2 x 2 arrays of Lucite cone applicators in flat layered phantoms using Gaussian-beam-predicted and thermographically measured SAR distributions.
    Rietveld PJ; Lumori ML; van der Zee J; van Rhoon GC
    Phys Med Biol; 1998 Aug; 43(8):2207-20. PubMed ID: 9725599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data.
    Ryan TP; Backus VL; Coughlin CT
    Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PC-aided assessment of the thermal performances of a MW applicator for oncological hyperthermia.
    Marini P; Guiot C; Baiotto B; Gabriele P
    Comput Biol Med; 2004 Jan; 34(1):3-13. PubMed ID: 14741726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specific absorption rates in simulated tissue media for a 10 x 10 cm 915-MHz waveguide applicator.
    Denman DL; Kolasa MJ; Elson HR; Aron BS; Kereiakes JG
    Med Phys; 1987; 14(4):681-6. PubMed ID: 3627011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance evaluation of annular arrays in practice: the measurement of phase and amplitude patterns of radio-frequency deep body applicators.
    Schneider CJ; Kuijer JP; Colussi LC; Schepp CJ; Van Dijk JD
    Med Phys; 1995 Jun; 22(6):755-65. PubMed ID: 7565364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.