These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10519981)

  • 1. Mechanisms associated with hypoxia- and contraction-mediated glucose transport in muscle are fibre-dependent.
    Fluckey JD; Ploug T; Galbo H
    Acta Physiol Scand; 1999 Sep; 167(1):83-7. PubMed ID: 10519981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle.
    Wright DC; Geiger PC; Holloszy JO; Han DH
    Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1062-6. PubMed ID: 15657088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hypoxia on fatigue development in rat muscle composed of different fibre types.
    Howlett RA; Hogan MC
    Exp Physiol; 2007 Sep; 92(5):887-94. PubMed ID: 17545215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of force development on contraction induced glucose transport in fast twitch rat muscle.
    Ihlemann J; Ploug T; Galbo H
    Acta Physiol Scand; 2001 Apr; 171(4):439-44. PubMed ID: 11421859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions.
    Kristiansen S; Asp S; Richter EA
    Am J Physiol; 1996 Aug; 271(2 Pt 2):R477-82. PubMed ID: 8770151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of microvascular oxygen pressures in rat muscles comprised of different fibre types.
    McDonough P; Behnke BJ; Padilla DJ; Musch TI; Poole DC
    J Physiol; 2005 Mar; 563(Pt 3):903-13. PubMed ID: 15637098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of 2-deoxyglucose transport in skeletal muscle: effects of insulin and contractions.
    Hansen P; Gulve E; Gao J; Schluter J; Mueckler M; Holloszy J
    Am J Physiol; 1995 Jan; 268(1 Pt 1):C30-5. PubMed ID: 7840158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle.
    Sandström ME; Zhang SJ; Bruton J; Silva JP; Reid MB; Westerblad H; Katz A
    J Physiol; 2006 Aug; 575(Pt 1):251-62. PubMed ID: 16777943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia and contractions do not utilize the same signaling mechanism in stimulating skeletal muscle glucose transport.
    Wojtaszewski JF; Laustsen JL; Derave W; Richter EA
    Biochim Biophys Acta; 1998 May; 1380(3):396-404. PubMed ID: 9555102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat.
    Merry TL; Dywer RM; Bradley EA; Rattigan S; McConell GK
    J Appl Physiol (1985); 2010 May; 108(5):1275-83. PubMed ID: 20203065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuated insulin action on glucose uptake and transport in muscle following resistance exercise in rats.
    Fluckey JD; Ploug T; Galbo H
    Acta Physiol Scand; 1999 Sep; 167(1):77-82. PubMed ID: 10519980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin action on rates of muscle protein synthesis following eccentric, muscle-damaging contractions.
    Fluckey JD; Asp S; Enevoldsen LH; Galbo H
    Acta Physiol Scand; 2001 Dec; 173(4):379-84. PubMed ID: 11903129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acute exercise on the content of free sphinganine and sphingosine in different skeletal muscle types of the rat.
    Dobrzyń A; Górski J
    Horm Metab Res; 2002 Sep; 34(9):523-9. PubMed ID: 12384830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcapillary PO
    Colburn TD; Hirai DM; Craig JC; Ferguson SK; Weber RE; Schulze KM; Behnke BJ; Musch TI; Poole DC
    J Physiol; 2020 Aug; 598(15):3187-3202. PubMed ID: 32445225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle.
    Hood DA; Gorski J; Terjung RL
    Am J Physiol; 1986 Apr; 250(4 Pt 1):E449-56. PubMed ID: 3963186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle.
    Derave W; Hespel P
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):255-63. PubMed ID: 9925895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative degree of stimulation-evoked glycogen degradation in muscle fibres of different type in rat gastrocnemius.
    Kernell D; Lind A; van Diemen AB; De Haan A
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):139-53. PubMed ID: 7541460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles.
    Jonsdottir IH; Schjerling P; Ostrowski K; Asp S; Richter EA; Pedersen BK
    J Physiol; 2000 Oct; 528 Pt 1(Pt 1):157-63. PubMed ID: 11018114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of 2-deoxyglucose for in vitro measurement of glucose transport activity in skeletal muscle.
    Hansen PA; Gulve EA; Holloszy JO
    J Appl Physiol (1985); 1994 Feb; 76(2):979-85. PubMed ID: 8175614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of electrical stimulation patterns on glucose transport in rat muscles.
    Jóhannsson E; Jensen J; Gundersen K; Dahl HA; Bonen A
    Am J Physiol; 1996 Aug; 271(2 Pt 2):R426-31. PubMed ID: 8770144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.