These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 10520286)
1. [Not Available]. Izv Akad Nauk Ser Biol; 1999 Jul; (4):417-24. PubMed ID: 10520286 [TBL] [Abstract][Full Text] [Related]
2. [The dynamics of abscisic acid and cytokinins content in the leaves of wheat-aegilops lines and their parental forms affected by powdery mildew]. Serezhkina GV; Mishina GN; Kondrat'eva VV; ryabchenko AS; Babosha AV; Talieva MN; Avetisyan TV; Laochkina IF; Andreev LN Izv Akad Nauk Ser Biol; 2004; (5):532-8. PubMed ID: 15559129 [TBL] [Abstract][Full Text] [Related]
3. [Morphological variability of the wheat powdery mildew in the context of its parasitic adaptation to the lines of wheat Aegilops with different resistance]. Riabchenko AS; Serezhkina GV; Mishina GN; Andreev LN Izv Akad Nauk Ser Biol; 2003; (3):315-21. PubMed ID: 12816064 [TBL] [Abstract][Full Text] [Related]
4. [Genetic analysis and gene deduction of powdery mildew resistance in T. durum-Ae. squarrosa amphidiploids]. Hu YK; Xin ZY; Chen X; Zhang ZY; Duan XY Yi Chuan Xue Bao; 2001; 28(2):152-7. PubMed ID: 11233259 [TBL] [Abstract][Full Text] [Related]
6. Resistance genes in wild accessions of Triticeae--inoculation test and STS marker analyses. Stepień Ł; Holubec V; Chełkowski J J Appl Genet; 2002; 43(4):423-35. PubMed ID: 12441628 [TBL] [Abstract][Full Text] [Related]
7. Genetic transfer of resistance to powdery mildew and of an associated biochemical marker from Aegilops ventricosa to hexaploid wheat. Delibes A; Lopez-Braña I; Mena M; García-Olmedo F Theor Appl Genet; 1987 Feb; 73(4):605-8. PubMed ID: 24241120 [TBL] [Abstract][Full Text] [Related]
8. Triticale powdery mildew: population characterization and wheat gene efficiency. Bouguennec A; Trottet M; du Cheyron P; Lonnet P Commun Agric Appl Biol Sci; 2014; 79(4):106-21. PubMed ID: 26072579 [TBL] [Abstract][Full Text] [Related]
9. [Endogenous abscisic acid level in wheat plants upon inoculation with the powdery mildew causative agent (Erysiphe graminis f.sp. tritici)]. Nikitina AV; Talieva MN Izv Akad Nauk Ser Biol; 2001; (3):318-22. PubMed ID: 11433942 [TBL] [Abstract][Full Text] [Related]
10. Identification of physiological races of Blumeria graminis f. sp. tritici and evaluation of powdery mildew resistance in wheat cultivars in Sistan province, Iran. Salari M; Okhovat SM; Sharifi-Tehrani A; Hedjaroude GA; Zad SJ; Mohammadi M Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):549-53. PubMed ID: 15151289 [TBL] [Abstract][Full Text] [Related]
11. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Shi AN; Leath S; Murphy JP Phytopathology; 1998 Feb; 88(2):144-7. PubMed ID: 18944983 [TBL] [Abstract][Full Text] [Related]
12. Quantitative trait Loci mapping for adult-plant resistance to powdery mildew in bread wheat. Liang SS; Suenaga K; He ZH; Wang ZL; Liu HY; Wang DS; Singh RP; Sourdille P; Xia XC Phytopathology; 2006 Jul; 96(7):784-9. PubMed ID: 18943153 [TBL] [Abstract][Full Text] [Related]
13. Fate of Aegilops speltoides-derived, repetitive DNA sequences in diploid Aegilops species, wheat-Aegilops amphiploids and derived chromosome addition lines. Kumar S; Friebe B; Gill BS Cytogenet Genome Res; 2010 Jul; 129(1-3):47-54. PubMed ID: 20551615 [TBL] [Abstract][Full Text] [Related]
14. [Construction and study of leaf rust-resistant common wheat lines with translocations of Aegilops speltoides Tausch]. Adonina IG; Petrash NV; Timonova EM; Khristov IuA; Salina EA Genetika; 2012 Apr; 48(4):488-94. PubMed ID: 22730768 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the resistance of Aegilops squarrosa to the wheatgrass mildew fungus by using the gene-for-gene reationship. Tosa Y; Sakai K Theor Appl Genet; 1991 Jun; 81(6):735-9. PubMed ID: 24221433 [TBL] [Abstract][Full Text] [Related]
16. Molecular and Cytogenetic Characterization of a Powdery Mildew-Resistant Wheat-Aegilops mutica Partial Amphiploid and Addition Line. Liu C; Li GR; Gong WP; Li GY; Han R; Li HS; Song JM; Liu AF; Cao XY; Chu XS; Yang ZJ; Huang CY; Zhao ZD; Liu JJ Cytogenet Genome Res; 2015; 147(2-3):186-94. PubMed ID: 26836300 [TBL] [Abstract][Full Text] [Related]
17. [Genetic control of the wheat Triticum monococcum L. resistance to powdery mildew]. Lebedeva TV; Peusha HO Genetika; 2006 Jan; 42(1):71-7. PubMed ID: 16523668 [TBL] [Abstract][Full Text] [Related]
18. [Molecular tagging of a major powdery mildew resistance gene MlG in wheat derived from wild Emmer by using microsatellite marker]. Xie CJ; Ni ZF; Sun QX; Yang ZM; Liu BS; Wei YL Yi Chuan Xue Bao; 2001 Nov; 28(11):1034-9. PubMed ID: 11725638 [TBL] [Abstract][Full Text] [Related]
19. [The effectiveness of molecular markers for the identification of Lr28, Lr35, and Lr47 genes in common wheat]. Gul'tiaeva EI; Orina AS; Gannibal FB; Mitrofanova OP; Odintsova IG; Laĭkova LI Genetika; 2014 Feb; 50(2):147-56. PubMed ID: 25711022 [TBL] [Abstract][Full Text] [Related]
20. [Characteristics of halo formation during pathogenesis as a response of cereal epidermal cells to penetration of powdery mildew pathogens]. Mishina GN; Serezhkina GV; Avetisian TV; Riabchenko AS; Andreev LN Izv Akad Nauk Ser Biol; 2001; (4):424-30. PubMed ID: 11525122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]