These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10521237)

  • 1. A role for the sarcolemmal Na(+)/H(+) exchanger in the slow force response to myocardial stretch.
    Kentish JC
    Circ Res; 1999 Oct; 85(8):658-60. PubMed ID: 10521237
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of cardiac sarcolemmal Na+/H+ exchanger activity by endogenous ligands. Relevance to ischemia.
    Avkiran M; Haworth RS
    Ann N Y Acad Sci; 1999 Jun; 874():335-45. PubMed ID: 10415545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cardiac sarcolemmal Na+/H+ exchanger activity: potential pathophysiological significance of endogenous mediators and oxidant stress.
    Avkiran M; Snabaitis AK
    J Thromb Thrombolysis; 1999 Jul; 8(1):25-32. PubMed ID: 10481211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.
    von Lewinski D; Stumme B; Maier LS; Luers C; Bers DM; Pieske B
    Cardiovasc Res; 2003 Mar; 57(4):1052-61. PubMed ID: 12650883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Na-H exchanger revisited: an update on Na-H exchange regulation and the role of the exchanger in hypertension and cardiac function in health and disease.
    Frölich O; Karmazyn M
    Cardiovasc Res; 1997 Nov; 36(2):138-48. PubMed ID: 9463626
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of SR load and pH regulatory mechanisms on stretch-dependent Ca(2+) entry during the slow force response.
    Shen X; Cannell MB; Ward ML
    J Mol Cell Cardiol; 2013 Oct; 63():37-46. PubMed ID: 23880608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of sarcolemmal Na(+)/H(+) exchanger activity by angiotensin II in adult rat ventricular myocytes: opposing actions via AT(1) versus AT(2) receptors.
    Gunasegaram S; Haworth RS; Hearse DJ; Avkiran M
    Circ Res; 1999 Nov; 85(10):919-30. PubMed ID: 10559139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [What is Na+/H+ exchanger guilty of in cardiology?].
    Cingolani HE; Pérez NG; Camilión de Hurtado MC
    Medicina (B Aires); 2000; 60(5 Pt 2):709-21. PubMed ID: 11188888
    [No Abstract]   [Full Text] [Related]  

  • 9. Stretch-elicited Na+/H+ exchanger activation: the autocrine/paracrine loop and its mechanical counterpart.
    Cingolani HE; Pérez NG; Pieske B; von Lewinski D; Camilión de Hurtado MC
    Cardiovasc Res; 2003 Mar; 57(4):953-60. PubMed ID: 12650873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early signals after stretch leading to cardiac hypertrophy. Key role of NHE-1.
    Cingolani HE; Perez NG; Aiello EA; Ennis IL; Garciarena CD; Villa-Abrille MC; Dulce RA; Caldiz CI; Yeves AM; Correa MV; Nolly MB; Chiappe de Cingolani G
    Front Biosci; 2008 May; 13():7096-114. PubMed ID: 18508719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin and endothelin: messengers that couple ventricular stretch to the Na+/H+ exchanger and cardiac hypertrophy.
    Dostal DE; Baker KM
    Circ Res; 1998 Oct; 83(8):870-3. PubMed ID: 9776734
    [No Abstract]   [Full Text] [Related]  

  • 12. Functional and cellular regulation of the myocardial Na+/H+ exchanger.
    Fliegel L
    J Thromb Thrombolysis; 1999 Jul; 8(1):9-14. PubMed ID: 10481209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory effects of G protein-coupled receptors on cardiac sarcolemmal Na+/H+ exchanger activity: signalling and significance.
    Avkiran M; Haworth RS
    Cardiovasc Res; 2003 Mar; 57(4):942-52. PubMed ID: 12650872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha1-adrenergic stimulation of sarcolemmal Na+-H+ exchanger activity in rat ventricular myocytes: evidence for selective mediation by the alpha1A-adrenoceptor subtype.
    Yokoyama H; Yasutake M; Avkiran M
    Circ Res; 1998 Jun; 82(10):1078-85. PubMed ID: 9622160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The autocrine/paracrine loop after myocardial stretch: mineralocorticoid receptor activation.
    Ennis IL; Aiello EA; Cingolani HE; Perez NG
    Curr Cardiol Rev; 2013 Aug; 9(3):230-40. PubMed ID: 23909633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and interaction of intracellular calcium, sodium and hydrogen ions in cardiac muscle.
    MacLeod KT
    Cardioscience; 1991 Jun; 2(2):71-85. PubMed ID: 1652299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-Ca2+ exchange in cardiac sarcolemma: modulation of Ca2+ affinity by exercise.
    Tibbits GF; Kashihara H; O'Reilly K
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C638-43. PubMed ID: 2923197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced stretch-induced force response in failing human myocardium caused by impaired Na(+)-contraction coupling.
    von Lewinski D; Kockskämper J; Zhu D; Post H; Elgner A; Pieske B
    Circ Heart Fail; 2009 Jan; 2(1):47-55. PubMed ID: 19808315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na(+)-H+ exchange in cardiac sarcolemmal vesicles isolated from diabetic rats.
    Pierce GN; Ramjiawan B; Dhalla NS; Ferrari R
    Am J Physiol; 1990 Jan; 258(1 Pt 2):H255-61. PubMed ID: 2154133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sarcolemmal Na(+)-Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts.
    Artman M
    Am J Physiol; 1992 Nov; 263(5 Pt 2):H1506-13. PubMed ID: 1443202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.