BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 10521263)

  • 1. The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions.
    Lashuel HA; Wurth C; Woo L; Kelly JW
    Biochemistry; 1999 Oct; 38(41):13560-73. PubMed ID: 10521263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation.
    Lashuel HA; Lai Z; Kelly JW
    Biochemistry; 1998 Dec; 37(51):17851-64. PubMed ID: 9922152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of lethal and nonlethal transthyretin variants and their relationship to amyloid disease.
    McCutchen SL; Lai Z; Miroy GJ; Kelly JW; Colón W
    Biochemistry; 1995 Oct; 34(41):13527-36. PubMed ID: 7577941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid.
    Lai Z; Colón W; Kelly JW
    Biochemistry; 1996 May; 35(20):6470-82. PubMed ID: 8639594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis.
    Quintas A; Saraiva MJ; Brito RM
    J Biol Chem; 1999 Nov; 274(46):32943-9. PubMed ID: 10551861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured.
    Jiang X; Smith CS; Petrassi HM; Hammarström P; White JT; Sacchettini JC; Kelly JW
    Biochemistry; 2001 Sep; 40(38):11442-52. PubMed ID: 11560492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils.
    Cardoso I; Goldsbury CS; Müller SA; Olivieri V; Wirtz S; Damas AM; Aebi U; Saraiva MJ
    J Mol Biol; 2002 Apr; 317(5):683-95. PubMed ID: 11955017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The amyloidogenic potential of transthyretin variants correlates with their tendency to aggregate in solution.
    Quintas A; Saraiva MJ; Brito RM
    FEBS Lett; 1997 Dec; 418(3):297-300. PubMed ID: 9428731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentially amyloidogenic conformational intermediates populate the unfolding landscape of transthyretin: insights from molecular dynamics simulations.
    Rodrigues JR; Simões CJ; Silva CG; Brito RM
    Protein Sci; 2010 Feb; 19(2):202-19. PubMed ID: 19937650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transthyretin mutation Leu-55-Pro significantly alters tetramer stability and increases amyloidogenicity.
    McCutchen SL; Colon W; Kelly JW
    Biochemistry; 1993 Nov; 32(45):12119-27. PubMed ID: 8218290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transthyretin forms amyloid fibrils at physiological pH with ultrasonication.
    Misumi Y; Ueda M; Fujimori H; Shinriki S; Meng W; Kim J; Saito S; Obayashi K; Uchino M; Ando Y
    Amyloid; 2008 Dec; 15(4):234-9. PubMed ID: 19065294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro.
    Colon W; Kelly JW
    Biochemistry; 1992 Sep; 31(36):8654-60. PubMed ID: 1390650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid.
    Kelly JW; Colon W; Lai Z; Lashuel HA; McCulloch J; McCutchen SL; Miroy GJ; Peterson SA
    Adv Protein Chem; 1997; 50():161-81. PubMed ID: 9338081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration and packing are crucial to amyloidogenesis as revealed by pressure studies on transthyretin variants that either protect or worsen amyloid disease.
    Ferrão-Gonzales AD; Palmieri L; Valory M; Silva JL; Lashuel H; Kelly JW; Foguel D
    J Mol Biol; 2003 May; 328(4):963-74. PubMed ID: 12729768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants.
    Quintas A; Vaz DC; Cardoso I; Saraiva MJ; Brito RM
    J Biol Chem; 2001 Jul; 276(29):27207-13. PubMed ID: 11306576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial conformational changes of human transthyretin under partially denaturing conditions.
    Yang M; Lei M; Bruschweiler R; Huo S
    Biophys J; 2005 Jul; 89(1):433-43. PubMed ID: 15821170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why is Leu55-->Pro55 transthyretin variant the most amyloidogenic: insights from molecular dynamics simulations of transthyretin monomers.
    Yang M; Lei M; Huo S
    Protein Sci; 2003 Jun; 12(6):1222-31. PubMed ID: 12761393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into a zinc-dependent pathway leading to Leu55Pro transthyretin amyloid fibrils.
    Castro-Rodrigues AF; Gales L; Saraiva MJ; Damas AM
    Acta Crystallogr D Biol Crystallogr; 2011 Dec; 67(Pt 12):1035-44. PubMed ID: 22120741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the binding of Cu(II) and Zn(II) to transthyretin: effects on amyloid formation.
    Wilkinson-White LE; Easterbrook-Smith SB
    Biochemistry; 2007 Aug; 46(31):9123-32. PubMed ID: 17630783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention of misfolded mutant transthyretin by the chaperone BiP/GRP78 mitigates amyloidogenesis.
    Sörgjerd K; Ghafouri B; Jonsson BH; Kelly JW; Blond SY; Hammarström P
    J Mol Biol; 2006 Feb; 356(2):469-82. PubMed ID: 16376939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.