These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 10522241)

  • 1. Q: a molecular dynamics program for free energy calculations and empirical valence bond simulations in biomolecular systems.
    Marelius J; Kolmodin K; Feierberg I; Aqvist J
    J Mol Graph Model; 1998; 16(4-6):213-25, 261. PubMed ID: 10522241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Qgui: A high-throughput interface for automated setup and analysis of free energy calculations and empirical valence bond simulations in biological systems.
    Isaksen GV; Andberg TA; Åqvist J; Brandsdal BO
    J Mol Graph Model; 2015 Jul; 60():15-23. PubMed ID: 26080356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved mapping of protein binding sites.
    Kortvelyesi T; Silberstein M; Dennis S; Vajda S
    J Comput Aided Mol Des; 2003; 17(2-4):173-86. PubMed ID: 13677484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of nucleophile activation in a protein tyrosine phosphatase.
    Hansson T; Nordlund P; Aqvist J
    J Mol Biol; 1997 Jan; 265(2):118-27. PubMed ID: 9020976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical investigations of prostatic acid phosphatase.
    Sharma S; Pirilä P; Kaija H; Porvari K; Vihko P; Juffer AH
    Proteins; 2005 Feb; 58(2):295-308. PubMed ID: 15578709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute Alchemical Free Energy Calculations for Ligand Binding: A Beginner's Guide.
    Aldeghi M; Bluck JP; Biggin PC
    Methods Mol Biol; 2018; 1762():199-232. PubMed ID: 29594774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding affinity prediction by linear interaction energy methods.
    Hansson T; Marelius J; Aqvist J
    J Comput Aided Mol Des; 1998 Jan; 12(1):27-35. PubMed ID: 9570087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEARLS: program for energetic analysis of receptor-ligand system.
    Han LY; Lin HH; Li ZR; Zheng CJ; Cao ZW; Xie B; Chen YZ
    J Chem Inf Model; 2006; 46(1):445-50. PubMed ID: 16426079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into ligand selectivity in estrogen receptor isoforms: molecular dynamics simulations and binding free energy calculations.
    Zeng J; Li W; Zhao Y; Liu G; Tang Y; Jiang H
    J Phys Chem B; 2008 Mar; 112(9):2719-26. PubMed ID: 18266357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of the rate limiting step in low molecular weight protein tyrosine phosphatase.
    Kolmodin K; Aqvist J
    FEBS Lett; 1999 Aug; 456(2):301-5. PubMed ID: 10456328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of substrate dephosphorylation in low Mr protein tyrosine phosphatase.
    Kolmodin K; Nordlund P; Aqvist J
    Proteins; 1999 Aug; 36(3):370-9. PubMed ID: 10409830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The catalytic power of ketosteroid isomerase investigated by computer simulation.
    Feierberg I; Aqvist J
    Biochemistry; 2002 Dec; 41(52):15728-35. PubMed ID: 12501201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient free energy calculations on small molecule host-guest systems - a combined linear interaction energy/one-step perturbation approach.
    Oostenbrink C
    J Comput Chem; 2009 Jan; 30(2):212-21. PubMed ID: 18785242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state.
    Harris DL; Park JY; Gruenke L; Waskell L
    Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational combinatorial ligand design: application to human alpha-thrombin.
    Caflisch A
    J Comput Aided Mol Des; 1996 Oct; 10(5):372-96. PubMed ID: 8951649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling.
    Gallicchio E; Levy RM
    J Comput Chem; 2004 Mar; 25(4):479-99. PubMed ID: 14735568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of the interactions between the Sem-5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis.
    Wang W; Lim WA; Jakalian A; Wang J; Wang J; Luo R; Bayly CI; Kollman PA
    J Am Chem Soc; 2001 May; 123(17):3986-94. PubMed ID: 11457149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semiempirical free energy force field with charge-based desolvation.
    Huey R; Morris GM; Olson AJ; Goodsell DS
    J Comput Chem; 2007 Apr; 28(6):1145-52. PubMed ID: 17274016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.