BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10523278)

  • 1. The relationship between xylem conduit diameter and cavitation caused by freezing.
    Davis SD; Sperry JS; Hacke UG
    Am J Bot; 1999 Oct; 86(10):1367-72. PubMed ID: 10523278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size.
    Pittermann J; Sperry JS
    Plant Physiol; 2006 Jan; 140(1):374-82. PubMed ID: 16377751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.
    Pittermann J; Sperry J
    Tree Physiol; 2003 Sep; 23(13):907-14. PubMed ID: 14532014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath.
    Feild TS; Brodribb T
    Oecologia; 2001 May; 127(3):314-320. PubMed ID: 28547101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species.
    Sperry JS; Sullivan JE
    Plant Physiol; 1992 Oct; 100(2):605-13. PubMed ID: 16653035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of drought-induced embolism formation and spread in living walnut saplings visualized using X-ray microtomography.
    Knipfer T; Brodersen CR; Zedan A; Kluepfel DA; McElrone AJ
    Tree Physiol; 2015 Jul; 35(7):744-55. PubMed ID: 26063708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poplar vulnerability to xylem cavitation acclimates to drier soil conditions.
    Awad H; Barigah T; Badel E; Cochard H; Herbette S
    Physiol Plant; 2010 Jul; 139(3):280-8. PubMed ID: 20210873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection.
    Pittermann J; Sperry JS; Hacke UG; Wheeler JK; Sikkema EH
    Am J Bot; 2006 Sep; 93(9):1265-73. PubMed ID: 21642190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ.
    Christensen-Dalsgaard KK; Tyree MT
    Plant Cell Environ; 2014 May; 37(5):1074-85. PubMed ID: 24117494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in drought- and freeze-induced embolisms in deciduous ring-porous plant species in Japan.
    Umebayashi T; Utsumi Y; Koga S; Murata I; Fukuda K
    Planta; 2016 Sep; 244(3):753-60. PubMed ID: 27376942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae).
    Willson CJ; Manos PS; Jackson RB
    Am J Bot; 2008 Mar; 95(3):299-314. PubMed ID: 21632355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures.
    Ogasa M; Miki N; Yoshikawa K
    Tree Physiol; 2010 May; 30(5):608-17. PubMed ID: 20368339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species.
    Johnson DM; Meinzer FC; Woodruff DR; McCulloh KA
    Plant Cell Environ; 2009 Jul; 32(7):828-36. PubMed ID: 19220781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xylem cavitation in roots and stems of Douglas-fir and white fir.
    Sperry JS; Ikeda T
    Tree Physiol; 1997 Apr; 17(4):275-80. PubMed ID: 14759867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method.
    Tobin MF; Pratt RB; Jacobsen AL; De Guzman ME
    Plant Biol (Stuttg); 2013 May; 15(3):496-504. PubMed ID: 23127246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of ultrasonic acoustic emissions from walnut branches during freeze-thaw-induced embolism formation.
    Kasuga J; Charrier G; Uemura M; Améglio T
    J Exp Bot; 2015 Apr; 66(7):1965-75. PubMed ID: 25662846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of xylem cavitation and freezing injury on dieback of yellow birch (Betula alleghaniensis) in relation to a simulated winter thaw.
    Zhu XB; Cox RM; Arp PA
    Tree Physiol; 2000 Apr; 20(8):541-547. PubMed ID: 12651435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling of angiosperm xylem structure with safety and efficiency.
    Hacke UG; Sperry JS; Wheeler JK; Castro L
    Tree Physiol; 2006 Jun; 26(6):689-701. PubMed ID: 16510385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of summer drought and winter freezing on stem hydraulic conductivity of Rhododendron species from contrasting climates.
    Cordero RA; Nilsen ET
    Tree Physiol; 2002 Sep; 22(13):919-28. PubMed ID: 12204848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms.
    Charrier G; Charra-Vaskou K; Kasuga J; Cochard H; Mayr S; Améglio T
    Plant Physiol; 2014 Feb; 164(2):992-8. PubMed ID: 24344170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.