These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10524259)

  • 21. Cytochrome bd-type quinol oxidase in a mutant of Bacillus stearothermophilus deficient in caa3-type cytochrome c oxidase.
    Sakamoto J; Matsumoto A; Oobuchi K; Sone N
    FEMS Microbiol Lett; 1996 Oct; 143(2-3):151-8. PubMed ID: 8837467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two distinct binding sites for high potential iron-sulfur protein and cytochrome c on the reaction center-bound cytochrome of Rubrivivax gelatinosus.
    Alric J; Yoshida M; Nagashima KV; Hienerwadel R; Parot P; Verméglio A; Chen SW; Pellequer JL
    J Biol Chem; 2004 Jul; 279(31):32545-53. PubMed ID: 15155756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and characterization of the complex I from the respiratory chain of Rhodothermus marinus.
    Fernandes AS; Pereira MM; Teixeira M
    J Bioenerg Biomembr; 2002 Dec; 34(6):413-21. PubMed ID: 12678433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure at 1.3 A resolution of Rhodothermus marinus caa(3) cytochrome c domain.
    Srinivasan V; Rajendran C; Sousa FL; Melo AM; Saraiva LM; Pereira MM; Santana M; Teixeira M; Michel H
    J Mol Biol; 2005 Feb; 345(5):1047-57. PubMed ID: 15644203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel cytochrome b(o/a)3-type oxidase from Bacillus stearothermophilus catalyzes cytochrome c-551 oxidation.
    Sakamoto J; Handa Y; Sone N
    J Biochem; 1997 Oct; 122(4):764-71. PubMed ID: 9399580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring substrate interaction in respiratory alternative complex III from Rhodothermus marinus.
    Calisto F; Todorovic S; Louro RO; Pereira MM
    Biochim Biophys Acta Bioenerg; 2023 Aug; 1864(3):148983. PubMed ID: 37127243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A ferredoxin from the thermohalophilic bacterium Rhodothermus marinus.
    Pereira MM; Jones KL; Campos MG; Melo AM; Saraiva LM; Louro RO; Wittung-Stafshede P; Teixeira M
    Biochim Biophys Acta; 2002 Nov; 1601(1):1-8. PubMed ID: 12429497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-yield purification of cytochrome aa3 and cytochrome caa3 oxidases from Bacillus subtilis plasma membranes.
    Henning W; Vo L; Albanese J; Hill BC
    Biochem J; 1995 Jul; 309 ( Pt 1)(Pt 1):279-83. PubMed ID: 7619069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The high potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans is competent in photosynthetic electron transfer.
    Hochkoeppler A; Ciurli S; Venturoli G; Zannoni D
    FEBS Lett; 1995 Jan; 357(1):70-4. PubMed ID: 8001683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of two terminal oxidases in Bacillus brevis and efficiency of energy conservation of the respiratory chain.
    Yaginuma A; Tsukita S; Sakamoto J; Sone N
    J Biochem; 1997 Nov; 122(5):969-76. PubMed ID: 9443812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a cb-type cytochrome c oxidase from Helicobacter pylori.
    Tsukita S; Koyanagi S; Nagata K; Koizuka H; Akashi H; Shimoyama T; Tamura T; Sone N
    J Biochem; 1999 Jan; 125(1):194-201. PubMed ID: 9880817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substitutions for glutamate 101 in subunit II of cytochrome c oxidase from Rhodobacter sphaeroides result in blocking the proton-conducting K-channel.
    Tomson FL; Morgan JE; Gu G; Barquera B; Vygodina TV; Gennis RB
    Biochemistry; 2003 Feb; 42(6):1711-7. PubMed ID: 12578386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron transfer dynamics of Rhodothermus marinus caa3 cytochrome c domains on biomimetic films.
    Molinas MF; De Candia A; Szajnman SH; Rodríguez JB; Martí M; Pereira M; Teixeira M; Todorovic S; Murgida DH
    Phys Chem Chem Phys; 2011 Oct; 13(40):18088-98. PubMed ID: 21922088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron paramagnetic resonance studies of the iron-sulfur centers from complex I of Rhodothermus marinus.
    Fernandes AS; Sousa FL; Teixeira M; Pereira MM
    Biochemistry; 2006 Jan; 45(3):1002-8. PubMed ID: 16411776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochrome c4 can be involved in the photosynthetic electron transfer system in the purple bacterium Rubrivivax gelatinosus.
    Ohmine M; Matsuura K; Shimada K; Alric J; Verméglio A; Nagashima KV
    Biochemistry; 2009 Sep; 48(38):9132-9. PubMed ID: 19697907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The caa3 terminal oxidase of Bacillus stearothermophilus. Transient spectroscopy of electron transfer and ligand binding.
    Giuffrè A; D'Itri E; Giannini S; Brunori M; Ubbink-Kok T; Konings WN; Antonini G
    J Biol Chem; 1996 Jun; 271(24):13987-92. PubMed ID: 8662862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the aerobic respiratory chain in the facultatively aerobic and hyperthermophilic archaeon Pyrobaculum oguniense.
    Nunoura T; Sako Y; Wakagi T; Uchida A
    Microbiology (Reading); 2003 Mar; 149(Pt 3):673-688. PubMed ID: 12634336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acid sequence of a high redox potential ferredoxin (HiPIP) from the purple phototrophic bacterium Rhodopila globiformis, which has the highest known redox potential of its class.
    Ambler RP; Meyer TE; Kamen MD
    Arch Biochem Biophys; 1993 Oct; 306(1):215-22. PubMed ID: 8215406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amino acid sequences and distribution of high-potential iron-sulfur proteins that donate electrons to the photosynthetic reaction center in phototropic proteobacteria.
    Van Driessche G; Vandenberghe I; Devreese B; Samyn B; Meyer TE; Leigh R; Cusanovich MA; Bartsch RG; Fischer U; Van Beeumen JJ
    J Mol Evol; 2003 Aug; 57(2):181-99. PubMed ID: 14562962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation, characterization, and functional role of the high-potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans.
    Hochkoeppler A; Kofod P; Ferro G; Ciurli S
    Arch Biochem Biophys; 1995 Oct; 322(2):313-8. PubMed ID: 7574702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.