These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 10524259)
41. Structural insights into electron transfer in caa3-type cytochrome oxidase. Lyons JA; Aragão D; Slattery O; Pisliakov AV; Soulimane T; Caffrey M Nature; 2012 Jul; 487(7408):514-8. PubMed ID: 22763450 [TBL] [Abstract][Full Text] [Related]
42. A tyrosine residue deprotonates during oxygen reduction by the caa3 reductase from Rhodothermus marinus. Pereira MM; Sousa FL; Teixeira M; Nyquist RM; Heberle J FEBS Lett; 2006 Feb; 580(5):1350-4. PubMed ID: 16466722 [TBL] [Abstract][Full Text] [Related]
43. Electron transfer kinetics during the reduction and turnover of the cytochrome caa3 complex from Bacillus subtilis. Assempour M; Lim D; Hill BC Biochemistry; 1998 Jul; 37(28):9991-8. PubMed ID: 9665704 [TBL] [Abstract][Full Text] [Related]
44. Interaction site for high-potential iron-sulfur protein on the tetraheme cytochrome subunit bound to the photosynthetic reaction center of Rubrivivax gelatinosus. Osyczka A; Nagashima KV; Shimada K; Matsuura K Biochemistry; 1999 Mar; 38(10):2861-5. PubMed ID: 10074337 [TBL] [Abstract][Full Text] [Related]
45. Cytochrome c oxidase as a calcium binding protein. Studies on the role of a conserved aspartate in helices XI-XII cytoplasmic loop in cation binding. Kirichenko AV; Pfitzner U; Ludwig B; Soares CM; Vygodina TV; Konstantinov AA Biochemistry; 2005 Sep; 44(37):12391-401. PubMed ID: 16156652 [TBL] [Abstract][Full Text] [Related]
46. Kinetics of cytochrome c and TMPD oxidation by cytochrome c oxidase from the thermophilic bacterium, PS3. Nicholls P; Sone N Biochim Biophys Acta; 1984 Nov; 767(2):240-7. PubMed ID: 6093870 [TBL] [Abstract][Full Text] [Related]
47. Amino acid sequences of two high-potential iron-sulfur proteins (HiPIPs) from the moderately halophilic purple phototrophic bacterium, Rhodospirillum salinarum. Ambler RP; Daniel M; Meyer TE; Cusanovich MA Arch Biochem Biophys; 1999 Sep; 369(1):143-8. PubMed ID: 10462450 [TBL] [Abstract][Full Text] [Related]
48. High-potential iron-sulfur protein (HiPIP) is the major electron donor to the reaction center complex in photosynthetically growing cells of the purple bacterium Rubrivivax gelatinosus. Nagashima KV; Matsuura K; Shimada K; Verméglio A Biochemistry; 2002 Nov; 41(47):14028-32. PubMed ID: 12437360 [TBL] [Abstract][Full Text] [Related]
49. Mechanism of inhibition of electron transfer by amino acid replacement K362M in a proton channel of Rhodobacter sphaeroides cytochrome c oxidase. Vygodina TV; Pecoraro C; Mitchell D; Gennis R; Konstantinov AA Biochemistry; 1998 Mar; 37(9):3053-61. PubMed ID: 9485458 [TBL] [Abstract][Full Text] [Related]
50. Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3. Mather MW; Springer P; Hensel S; Buse G; Fee JA J Biol Chem; 1993 Mar; 268(8):5395-408. PubMed ID: 8383670 [TBL] [Abstract][Full Text] [Related]
51. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases. Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874 [TBL] [Abstract][Full Text] [Related]
52. Resonance Raman spectroscopic study of the caa3 oxidase from Thermus thermophilus. Gerscher S; Hildebrandt P; Soulimane T; Buse G Biospectroscopy; 1998; 4(6):365-77. PubMed ID: 9851718 [TBL] [Abstract][Full Text] [Related]
53. Defining the structural domain of subunit II of the heme-copper terminal oxidase using chimeric enzymes constructed from the Escherichia coli bo-type ubiquinol oxidase and the thermophilic Bacillus caa(3)-type cytochrome c oxidase. Sakamoto K; Mogi T; Noguchi S; Sone N J Biochem; 1999 Nov; 126(5):934-9. PubMed ID: 10544288 [TBL] [Abstract][Full Text] [Related]
55. A novel type of monoheme cytochrome c: biochemical and structural characterization at 1.23 A resolution of rhodothermus marinus cytochrome c. Stelter M; Melo AM; Pereira MM; Gomes CM; Hreggvidsson GO; Hjorleifsdottir S; Saraiva LM; Teixeira M; Archer M Biochemistry; 2008 Nov; 47(46):11953-63. PubMed ID: 18855424 [TBL] [Abstract][Full Text] [Related]
56. A nhaD Na+/H+ antiporter and a pcd homologues are among the Rhodothermus marinus complex I genes. Melo AM; Lobo SA; Sousa FL; Fernandes AS; Pereira MM; Hreggvidsson GO; Kristjansson JK; Saraiva LM; Teixeira M Biochim Biophys Acta; 2005 Aug; 1709(1):95-103. PubMed ID: 16023073 [TBL] [Abstract][Full Text] [Related]
57. Kinetics of electron and proton transfer during O(2) reduction in cytochrome aa(3) from A. ambivalens: an enzyme lacking Glu(I-286). Gilderson G; Aagaard A; Gomes CM; Adelroth P; Teixeira M; Brzezinski P Biochim Biophys Acta; 2001 Jan; 1503(3):261-70. PubMed ID: 11115638 [TBL] [Abstract][Full Text] [Related]
58. Binuclear centre structure of terminal protonmotive oxidases. Brown S; Moody AJ; Mitchell R; Rich PR FEBS Lett; 1993 Feb; 316(3):216-23. PubMed ID: 7678556 [TBL] [Abstract][Full Text] [Related]
59. A D-pathway mutation decouples the Paracoccus denitrificans cytochrome c oxidase by altering the side-chain orientation of a distant conserved glutamate. Dürr KL; Koepke J; Hellwig P; Müller H; Angerer H; Peng G; Olkhova E; Richter OM; Ludwig B; Michel H J Mol Biol; 2008 Dec; 384(4):865-77. PubMed ID: 18930738 [TBL] [Abstract][Full Text] [Related]
60. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. Preisig O; Zufferey R; Thöny-Meyer L; Appleby CA; Hennecke H J Bacteriol; 1996 Mar; 178(6):1532-8. PubMed ID: 8626278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]