These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10524291)

  • 21. A new sensor for measurement of dynamic contact stress in the hip.
    Rudert MJ; Ellis BJ; Henak CR; Stroud NJ; Pederson DR; Weiss JA; Brown TD
    J Biomech Eng; 2014 Mar; 136(3):035001. PubMed ID: 24763632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An MRI-based method to align the compressive loading axis for human cadaveric knees.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2007 Dec; 129(6):855-62. PubMed ID: 18067389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation.
    Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE
    J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint compression alters the kinematics and loading patterns of the intact and capsule-transected AC joint.
    Costic RS; Jari R; Rodosky MW; Debski RE
    J Orthop Res; 2003 May; 21(3):379-85. PubMed ID: 12706008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine.
    Wilson DC; Niosi CA; Zhu QA; Oxland TR; Wilson DR
    J Biomech; 2006; 39(2):348-53. PubMed ID: 16321637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing.
    Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):977-83. PubMed ID: 16790304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematics of the knee at high flexion angles: an in vitro investigation.
    Li G; Zayontz S; DeFrate LE; Most E; Suggs JF; Rubash HE
    J Orthop Res; 2004 Jan; 22(1):90-5. PubMed ID: 14656665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contact Analysis of Horizontal Cleavage Tear Treatment.
    Uquillas C; Arno S; Ramme A; Oh C; Walker P; Meislin R
    Bull Hosp Jt Dis (2013); 2017 May; 75(3):164-172. PubMed ID: 28902600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo medial and lateral tibial loads during dynamic and high flexion activities.
    Zhao D; Banks SA; D'Lima DD; Colwell CW; Fregly BJ
    J Orthop Res; 2007 May; 25(5):593-602. PubMed ID: 17290383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements.
    Gao L; Wang F; Yang P; Jin Z
    Med Eng Phys; 2009 Jul; 31(6):720-9. PubMed ID: 19269879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.
    Gabriel MT; Wong EK; Woo SL; Yagi M; Debski RE
    J Orthop Res; 2004 Jan; 22(1):85-9. PubMed ID: 14656664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forces in anterior cruciate ligament during simulated weight-bearing flexion with anterior and internal rotational tibial load.
    Lo J; Müller O; Wünschel M; Bauer S; Wülker N
    J Biomech; 2008; 41(9):1855-61. PubMed ID: 18513729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonweight-bearing anterior knee laxity is related to anterior tibial translation during transition from nonweight bearing to weight bearing.
    Shultz SJ; Shimokochi Y; Nguyen AD; Ambegaonkar JP; Schmitz RJ; Beynnon BD; Perrin DH
    J Orthop Res; 2006 Mar; 24(3):516-23. PubMed ID: 16456828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic in vitro measurement of posterior cruciate ligament load and tibiofemoral stress after TKA in dependence on tibiofemoral slope.
    Ostermeier S; Schlomach C; Hurschler C; Windhagen H; Stukenborg-Colsman C
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):525-32. PubMed ID: 16494980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee.
    Allen CR; Wong EK; Livesay GA; Sakane M; Fu FH; Woo SL
    J Orthop Res; 2000 Jan; 18(1):109-15. PubMed ID: 10716286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact load transmission of the knee joint-influence of leg alignment and the role of meniscus and articular cartilage.
    Fukuda Y; Takai S; Yoshino N; Murase K; Tsutsumi S; Ikeuchi K; Hirasawa Y
    Clin Biomech (Bristol, Avon); 2000 Aug; 15(7):516-21. PubMed ID: 10831811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications.
    Marzo JM; Gurske-DePerio J
    Am J Sports Med; 2009 Jan; 37(1):124-9. PubMed ID: 18815238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro measurement of pressure differences using manometry at various injection speeds during discography.
    Seo KS; Derby R; Date ES; Lee SH; Kim BJ; Lee CH
    Spine J; 2007; 7(1):68-73. PubMed ID: 17197335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of valgus/varus malalignment on load distribution in total knee replacements.
    Werner FW; Ayers DC; Maletsky LP; Rullkoetter PJ
    J Biomech; 2005 Feb; 38(2):349-55. PubMed ID: 15598463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A technique to measure eyelid pressure using piezoresistive sensors.
    Shaw AJ; Davis BA; Collins MJ; Carney LG
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2512-7. PubMed ID: 19457740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.