These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10524315)

  • 21. An In Vitro Single-Primer Site-Directed Mutagenesis Method for Use in Biotechnology.
    Huang Y; Zhang L
    Methods Mol Biol; 2017; 1498():375-383. PubMed ID: 27709590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-directed mutagenesis using double-stranded plasmid DNA templates.
    Braman J; Papworth C; Greener A
    Methods Mol Biol; 1996; 57():31-44. PubMed ID: 8849992
    [No Abstract]   [Full Text] [Related]  

  • 23. Parallel assembly for multiple site-directed mutagenesis of plasmids.
    Yan P; Gao X; Shen W; Zhou P; Duan J
    Anal Biochem; 2012 Nov; 430(1):65-7. PubMed ID: 22885236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly efficient one-step PCR-based mutagenesis technique for large plasmids using high-fidelity DNA polymerase.
    Liu H; Ye R; Wang YY
    Genet Mol Res; 2015 Apr; 14(2):3466-73. PubMed ID: 25966113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing DpnI digestion conditions to detect replicated DNA.
    Lu L; Patel H; Bissler JJ
    Biotechniques; 2002 Aug; 33(2):316-8. PubMed ID: 12188183
    [No Abstract]   [Full Text] [Related]  

  • 26. [Site-directed mutagenesis in the uracil-repair system. Preparation of mutated forms of human alpha 2 interferon].
    Shekhter II; Veĭko VP; Bulenkov MT; Ratmanova KI; Debabov VG
    Mol Biol (Mosk); 1991; 25(1):153-61. PubMed ID: 1896031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient site directed in vitro mutagenesis using ampicillin selection.
    Lewis MK; Thompson DV
    Nucleic Acids Res; 1990 Jun; 18(12):3439-43. PubMed ID: 2194159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improvement of the site-directed mutagenesis method by combination of megaprimer, one-side PCR and DpnI treatment.
    Wei D; Li M; Zhang X; Xing L
    Anal Biochem; 2004 Aug; 331(2):401-3. PubMed ID: 15265749
    [No Abstract]   [Full Text] [Related]  

  • 29. Characterization of eukaryotic DNA N(6)-methyladenine by a highly sensitive restriction enzyme-assisted sequencing.
    Luo GZ; Wang F; Weng X; Chen K; Hao Z; Yu M; Deng X; Liu J; He C
    Nat Commun; 2016 Apr; 7():11301. PubMed ID: 27079427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PTO-QuickStep: A Fast and Efficient Method for Cloning Random Mutagenesis Libraries.
    Jajesniak P; Tee KL; Wong TS
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31405219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PCR-generated cross-over linkers for site-directed mutagenesis.
    Boyd AC; Porteous DJ
    Biotechniques; 1997 Nov; 23(5):827-30. PubMed ID: 9383545
    [No Abstract]   [Full Text] [Related]  

  • 32. A single digestion, single-stranded oligonucleotide mediated PCR-independent site-directed mutagenesis method.
    Dong M; Wang F; Li Q; Han R; Li A; Zhai C; Ma L
    Appl Microbiol Biotechnol; 2020 May; 104(9):3993-4003. PubMed ID: 32152687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient site-directed in vitro mutagenesis using phagemid vectors.
    McClary JA; Witney F; Geisselsoder J
    Biotechniques; 1989 Mar; 7(3):282-9. PubMed ID: 2698649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrimination of A1555G and C1494T point mutations in the mitochondrial 12S rRNA gene by on/off switch.
    Guo ZF; Guo WS; Xiao L; Gao GQ; Lan F; Lu XG; Li K; Liao DF
    Appl Biochem Biotechnol; 2012 Jan; 166(1):234-42. PubMed ID: 22068689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A one-step method for quantitative determination of uracil in DNA by real-time PCR.
    Horváth A; Vértessy BG
    Nucleic Acids Res; 2010 Nov; 38(21):e196. PubMed ID: 20864450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Success of the PCR-based replication assay depends on the number of methylation sensitive restriction sites in the PCR amplifying region.
    Metta MK; Tantravahi S; Kunaparaju R
    Cell Mol Biol (Noisy-le-grand); 2015 Jun; 61(3):1-5. PubMed ID: 26068910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Replication of M13 single-stranded viral DNA bearing single site-specific adducts by escherichia coli cell extracts: differential efficiency of translesion DNA synthesis for SOS-dependent and SOS-independent lesions.
    Wang G; Rahman MS; Humayun MZ
    Biochemistry; 1997 Aug; 36(31):9486-92. PubMed ID: 9235993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient long-PCR site-specific mutagenesis of a high GC template.
    Chouljenko V; Jayachandra S; Rybachuk G; Kousoulas KG
    Biotechniques; 1996 Sep; 21(3):472-4, 476-8, 480. PubMed ID: 8879587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo elimination of parental clones in general and site-directed mutagenesis.
    Holland EG; Acca FE; Belanger KM; Bylo ME; Kay BK; Weiner MP; Kiss MM
    J Immunol Methods; 2015 Feb; 417():67-75. PubMed ID: 25523926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high-throughput and single-tube recombination of crude PCR products using a DNA polymerase inhibitor and type IIS restriction enzyme.
    Kotera I; Nagai T
    J Biotechnol; 2008 Oct; 137(1-4):1-7. PubMed ID: 18692529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.