These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 10524623)

  • 1. Low-temperature crystallization of silicate dust in circumstellar disks.
    Molster FJ; Yamamura I; Waters LB; Tielens AG; de Graauw T; de Jong T; de Koter A; Malfait K; van den Ancker ME; van Winckel H; Voors RH; Waelkens C
    Nature; 1999 Oct; 401(6753):563-5. PubMed ID: 10524623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Samples of stars beyond the solar system: silicate grains in interplanetary dust.
    Messenger S; Keller LP; Stadermann FJ; Walker RM; Zinner E
    Science; 2003 Apr; 300(5616):105-8. PubMed ID: 12610229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The onset of planet formation in brown dwarf disks.
    Apai D; Pascucci I; Bouwman J; Natta A; Henning T; Dullemond CP
    Science; 2005 Nov; 310(5749):834-6. PubMed ID: 16239438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substantial reservoirs of molecular hydrogen in the debris disks around young stars.
    Thi WF; Blake GA; van Dishoeck EF; van Zadelhoff GJ; Horn JM; Becklin EE; Mannings V; Sargent AI; van Den Ancker ME; Natta A
    Nature; 2001 Jan; 409(6816):60-3. PubMed ID: 11343110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for dust grain growth in young circumstellar disks.
    Throop HB; Bally J; Esposito LW; McCaughrean MJ
    Science; 2001 Jun; 292(5522):1686-9. PubMed ID: 11326083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The building blocks of planets within the 'terrestrial' region of protoplanetary disks.
    van Boekel R; Min M; Leinert Ch; Waters LB; Richichi A; Chesneau O; Dominik C; Jaffe W; Dutrey A; Graser U; Henning T; de Jong J; Köhler R; de Koter A; Lopez B; Malbet F; Morel S; Paresce F; Perrin G; Preibisch T; Przygodda F; Schöller M; Wittkowski M
    Nature; 2004 Nov; 432(7016):479-82. PubMed ID: 15565147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicate core-organic refractory mantle particles as interstellar dust and as aggregated in comets and stellar disks.
    Greenberg JM; Li A
    Adv Space Res; 1997; 19(7):981-90. PubMed ID: 11541345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the ages of comets from the fraction of crystalline dust.
    Nuth JA; Hill HG; Kletetschka G
    Nature; 2000 Jul; 406(6793):275-6. PubMed ID: 10917522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of C60 and C70 in a young planetary nebula.
    Cami J; Bernard-Salas J; Peeters E; Malek SE
    Science; 2010 Sep; 329(5996):1180-2. PubMed ID: 20651118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An infrared spectral match between GEMS and interstellar grains.
    Bradley JP; Keller LP; Snow TP; Hanner MS; Flynn GJ; Gezo JC; Clemett SJ; Brownlee DE; Bowey JE
    Science; 1999 Sep; 285(5434):1716-8. PubMed ID: 10481004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical evolution of interstellar dust, comets and the origins of life.
    Greenberg JM; Zhao N; Hage J
    Ann Phys (Paris); 1989 Apr; 14():103-31. PubMed ID: 11542180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of carbonates in dust shells around evolved stars.
    Kemper F; Jäger C; Waters LB; Henning T; Molster FJ; Barlow MJ; Lim T; de Koter A
    Nature; 2002 Jan; 415(6869):295-7. PubMed ID: 11797000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants.
    Schutte WA; Tielens AG
    Astrophys J; 1989 Aug; 343(1):369-92. PubMed ID: 11538346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of giant-planet formation by rapid gas depletion around young stars.
    Zuckerman B; Forveille T; Kastner JH
    Nature; 1995 Feb; 373(6514):494-6. PubMed ID: 7845460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectroscopy of comet 81P/Wild 2 samples returned by Stardust.
    Keller LP; Bajt S; Baratta GA; Borg J; Bradley JP; Brownlee DE; Busemann H; Brucato JR; Burchell M; Colangeli L; d'Hendecourt L; Djouadi Z; Ferrini G; Flynn G; Franchi IA; Fries M; Grady MM; Graham GA; Grossemy F; Kearsley A; Matrajt G; Nakamura-Messenger K; Mennella V; Nittler L; Palumbo ME; Stadermann FJ; Tsou P; Rotundi A; Sandford SA; Snead C; Steele A; Wooden D; Zolensky M
    Science; 2006 Dec; 314(5806):1728-31. PubMed ID: 17170293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phyllosilicate emission from protoplanetary disks: is the indirect detection of extrasolar water possible?
    Morris MA; Desch SJ
    Astrobiology; 2009 Dec; 9(10):965-78. PubMed ID: 20041749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of molecular-cloud material in interplanetary dust particles.
    Messenger S
    Nature; 2000 Apr; 404(6781):968-71. PubMed ID: 10801119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stardust silicates from primitive meteorites.
    Nagashima K; Krot AN; Yurimoto H
    Nature; 2004 Apr; 428(6986):921-4. PubMed ID: 15118720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared emission from comets.
    Krishna-Swamy KS; Sandford SA; Allamandola LJ; Witteborn FC; Bregman JD
    Astrophys J; 1989 May; 340(1):527-49. PubMed ID: 11538866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rotating disk of gas and dust around a young counterpart to beta Pictoris.
    Mannings V; Koerner DW; Sargent AI
    Nature; 1997 Aug; 388(6642):555-7. PubMed ID: 9252187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.