These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10524774)

  • 1. Relationship between amino acid properties and protein stability: buried mutations.
    Gromiha MM; Oobatake M; Kono H; Uedaira H; Sarai A
    J Protein Chem; 1999 Jul; 18(5):565-78. PubMed ID: 10524774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of structural and sequence information in the prediction of protein stability changes: comparison between buried and partially buried mutations.
    Gromiha MM; Oobatake M; Kono H; Uedaira H; Sarai A
    Protein Eng; 1999 Jul; 12(7):549-55. PubMed ID: 10436080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of surrounding residues for protein stability of partially buried mutations.
    Gromiha MM; Oobatake M; Kono H; Uedaira H; Sarai A
    J Biomol Struct Dyn; 2000 Oct; 18(2):281-95. PubMed ID: 11089649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Comput Biol Chem; 2005 Feb; 29(1):25-35. PubMed ID: 15680583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting "reverse hydrophobic effect": applicable only to coil mutations at the surface.
    Gromiha MM
    Biopolymers; 2009 Jul; 91(7):591-9. PubMed ID: 19283830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Average assignment method for predicting the stability of protein mutants.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Biopolymers; 2006 May; 82(1):80-92. PubMed ID: 16453276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of mutant position in Ramachandran plot for predicting protein stability of surface mutations.
    Gromiha MM; Oobatake M; Kono H; Uedaira H; Sarai A
    Biopolymers; 2002 Aug; 64(4):210-20. PubMed ID: 12115138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein stability for single substitution mutants and the extent of local compactness in the denatured state.
    Miyazawa S; Jernigan RL
    Protein Eng; 1994 Oct; 7(10):1209-20. PubMed ID: 7855136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent accessible surface area of amino acid residues in globular proteins: correlation of apparent transfer free energies with experimental hydrophobicity scales.
    Shaytan AK; Shaitan KV; Khokhlov AR
    Biomacromolecules; 2009 May; 10(5):1224-37. PubMed ID: 19334678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new scale for side-chain contribution to protein stability based on the empirical stability analysis of mutant proteins.
    Takano K; Yutani K
    Protein Eng; 2001 Aug; 14(8):525-8. PubMed ID: 11579219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence.
    Gilis D; Rooman M
    J Mol Biol; 1997 Sep; 272(2):276-90. PubMed ID: 9299354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials.
    Gilis D; Rooman M
    J Mol Biol; 1996 Apr; 257(5):1112-26. PubMed ID: 8632471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlating structure-dependent mutation matrices with physical-chemical properties.
    Koshi JM; Goldstein RA
    Pac Symp Biocomput; 1996; ():488-99. PubMed ID: 9390253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Important amino acid properties for determining the transition state structures of two-state protein mutants.
    Gromiha MM; Selvaraj S
    FEBS Lett; 2002 Aug; 526(1-3):129-34. PubMed ID: 12208519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type.
    Fujiwara K; Toda H; Ikeguchi M
    BMC Struct Biol; 2012 Aug; 12():18. PubMed ID: 22857400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein mutant stability using classification and regression tool.
    Huang LT; Saraboji K; Ho SY; Hwang SF; Ponnuswamy MN; Gromiha MM
    Biophys Chem; 2007 Feb; 125(2-3):462-70. PubMed ID: 17113702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of change in protein unfolding rates upon point mutations in two state proteins.
    Chaudhary P; Naganathan AN; Gromiha MM
    Biochim Biophys Acta; 2016 Sep; 1864(9):1104-1109. PubMed ID: 27264959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation matrices and physical-chemical properties: correlations and implications.
    Koshi JM; Goldstein RA
    Proteins; 1997 Mar; 27(3):336-44. PubMed ID: 9094736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.