These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10524932)

  • 1. Biocompatibility testing of a new bioabsorbable X-ray positive SR-PLA 96/4 urethral stent.
    Isotalo T; Alarakkola E; Talja M; Tammela TL; Välimaa T; Törmälä P
    J Urol; 1999 Nov; 162(5):1764-7. PubMed ID: 10524932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue biocompatibility of a new caprolactone-coated self-reinforced self-expandable poly-L-lactic acid bioabsorbable urethral stent.
    Isotalo T; Halasz A; Talja M; Tammela TL; Paasimaa S; Törmälä P
    J Endourol; 1999 Sep; 13(7):525-30. PubMed ID: 10569529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rabbit muscle and urethral in situ biocompatibility properties of the self-reinforced L-lactide-glycolic acid copolymer 80: 20 spiral stent.
    Laaksovirta S; Laurila M; Isotalo T; Välimaa T; Tammela TL; Törmälä P; Talja M
    J Urol; 2002 Mar; 167(3):1527-31. PubMed ID: 11832782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The morphological, in situ effects of a self-reinforced bioabsorbable polylactide (SR-PLA 96) ureteric stent; an experimental study.
    Lumiaho J; Heino A; Pietiläinen T; Ala-Opas M; Talja M; Välimaa T; Törmälä P
    J Urol; 2000 Oct; 164(4):1360-3. PubMed ID: 10992415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue biocompatibility of new biodegradable drug-eluting stent materials.
    Uurto I; Kotsar A; Isotalo T; Mikkonen J; Martikainen PM; Kellomäki M; Törmälä P; Tammela TL; Talja M; Salenius JP
    J Mater Sci Mater Med; 2007 Aug; 18(8):1543-7. PubMed ID: 17437066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility and implantation properties of 2 differently braided, biodegradable, self-reinforced polylactic acid urethral stents: an experimental study in the rabbit.
    Isotalo T; Nuutinen JP; Vaajanen A; Martikainen PM; Laurila M; Törmälä P; Talja M; Tammela TL
    J Urol; 2005 Dec; 174(6):2401-4. PubMed ID: 16280856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion and fixation properties of a new braided biodegradable urethral stent: an experimental study in the rabbit.
    Vaajanen A; Nuutinen JP; Isotalo T; Törmälä P; Tammela TL; Talja M
    J Urol; 2003 Mar; 169(3):1171-4. PubMed ID: 12576875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility, encrustation and biodegradation of ofloxacine and silver nitrate coated poly-L-lactic acid stents in rabbit urethra.
    Multanen M; Tammela TL; Laurila M; Seppälä J; Välimaa T; Törmälä P; Talja M
    Urol Res; 2002 Sep; 30(4):227-32. PubMed ID: 12202940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of a new bioabsorbable radiopaque stent material (BaSO4 containing poly-L,D-lactide) in the rat pancreas.
    Lämsä T; Jin H; Mikkonen J; Laukkarinen J; Sand J; Nordback I
    Pancreatology; 2006; 6(4):301-5. PubMed ID: 16636604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioabsorbable self-expandable, self-reinforced poly-L-lactic acid urethral stent for recurrent urethral strictures: long-term results.
    Isotalo T; Talja M; Välimaa T; Törmälä P; Tammela TL
    J Endourol; 2002 Dec; 16(10):759-62. PubMed ID: 12542880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of biodegradable self-reinforced polyglycolic acid, poly-DL-lactic acid and stainless-steel spiral stents on uroepithelium after Nd:YAG laser irradiation of the canine prostate.
    Pétas A; Kärkkäinen P; Talja M; Taari K; Laato M; Välimaa T; Törmälä P
    Br J Urol; 1997 Dec; 80(6):903-7. PubMed ID: 9439406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encrustation and strength retention properties of the self-expandable, biodegradable, self-reinforced L-lactide-glycolic acid co-polymer 80:20 spiral urethral stent in vitro.
    Laaksovirta S; Välimaa T; Isotalo T; Törmälä P; Talja M; Tammela TL
    J Urol; 2003 Aug; 170(2 Pt 1):468-71. PubMed ID: 12853801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility properties of a new braided biodegradable urethral stent: a comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra.
    Isotalo TM; Nuutine JP; Vaajanen A; Martikainen PM; Laurila M; Törmälä P; Talja M; Tammela TL
    BJU Int; 2006 Apr; 97(4):856-9. PubMed ID: 16536787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drainage and antireflux characteristics of a biodegradable self-reinforced, self-expanding X-ray-positive poly-L,D-lactide spiral partial ureteral stent: an experimental study.
    Lumiaho J; Heino A; Kauppinen T; Talja M; Alhava E; Välimaa T; Törmälä P
    J Endourol; 2007 Dec; 21(12):1559-64. PubMed ID: 18186698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioabsorbable and biodegradable stents in urology.
    Talja M; Välimaa T; Tammela T; Petas A; Törmälä P
    J Endourol; 1997 Dec; 11(6):391-7. PubMed ID: 9440846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New bioabsorbable polylactide ureteral stent in the treatment of ureteral lesions: an experimental study.
    Lumiaho J; Heino A; Tunninen V; Ala-Opas M; Talja M; Välimaa T; Törmälä P
    J Endourol; 1999 Mar; 13(2):107-12. PubMed ID: 10213104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New tubular bioabsorbable knitted airway stent: biocompatibility and mechanical strength.
    Saito Y; Minami K; Kobayashi M; Nakao Y; Omiya H; Imamura H; Sakaida N; Okamura A
    J Thorac Cardiovasc Surg; 2002 Jan; 123(1):161-7. PubMed ID: 11782770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new biodegradable braided self-expandable PLGA prostatic stent: an experimental study in the rabbit.
    Kotsar A; Isotalo T; Mikkonen J; Juuti H; Martikainen PM; Talja M; Kellomäki M; Törmälä P; Tammela TL
    J Endourol; 2008 May; 22(5):1065-9. PubMed ID: 18643724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility of new drug-eluting biodegradable urethral stent materials.
    Kotsar A; Nieminen R; Isotalo T; Mikkonen J; Uurto I; Kellomäki M; Talja M; Moilanen E; Tammela TL
    Urology; 2010 Jan; 75(1):229-34. PubMed ID: 19647295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial adherence to self-reinforced polyglycolic acid and self-reinforced polylactic acid 96 urological spiral stents in vitro.
    Pétas A; Vuopio-Varkila J; Siitonen A; Välimaa T; Talja M; Taari K
    Biomaterials; 1998; 19(7-9):677-81. PubMed ID: 9663740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.