These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 10525265)
1. Formation and reactions of N(7)-aminoguanosine and derivatives. Guengerich FP; Mundkowski RG; Voehler M; Kadlubar FF Chem Res Toxicol; 1999 Oct; 12(10):906-16. PubMed ID: 10525265 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of C8 alkylation of guanine residues by activated arylamines: evidence for initial adduct formation at the N7 position. Humphreys WG; Kadlubar FF; Guengerich FP Proc Natl Acad Sci U S A; 1992 Sep; 89(17):8278-82. PubMed ID: 1518858 [TBL] [Abstract][Full Text] [Related]
3. Aminations of guanosine and deoxyguanosine with hydroxylamine-O-sulfonic acid and 2,4-dinitrophenoxyamine. Dependence on the reaction medium. Kohda K; Baba K; Kawazoe Y Nucleic Acids Symp Ser; 1986; (17):145-8. PubMed ID: 3562259 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of cytochrome P450 1A2-mediated formation of N-hydroxy arylamines and heterocyclic amines and their reaction with guanyl residues. Guengerich FP; Humphreys WG; Yun CH; Hammons GJ; Kadlubar FF; Seto Y; Okazaki O; Martin MV Princess Takamatsu Symp; 1995; 23():78-84. PubMed ID: 8844798 [TBL] [Abstract][Full Text] [Related]
5. Formation of 1,N2- and N2,3-ethenoguanine from 2-halooxiranes: isotopic labeling studies and isolation of a hemiaminal derivative of N2-(2-oxoethyl)guanine. Guengerich FP; Persmark M; Humphreys WG Chem Res Toxicol; 1993; 6(5):635-48. PubMed ID: 8292741 [TBL] [Abstract][Full Text] [Related]
6. Reaction of trans-4-N-acetoxy-N-acetylaminostilbene with guanosine and deoxyguanosine in vitro: the primary reaction product at N2 of guanine yields different final adducts. Franz R; Neumann HG Chem Biol Interact; 1988; 67(1-2):105-16. PubMed ID: 3168079 [TBL] [Abstract][Full Text] [Related]
7. Characterization of N1- and N6-adenosine adducts and N1-inosine adducts formed by the reaction of butadiene monoxide with adenosine: evidence for the N1-adenosine adducts as major initial products. Selzer RR; Elfarra AA Chem Res Toxicol; 1996; 9(5):875-81. PubMed ID: 8828924 [TBL] [Abstract][Full Text] [Related]
8. Covalent binding of leukotriene A4 to DNA and RNA. Hankin JA; Jones DN; Murphy RC Chem Res Toxicol; 2003 Apr; 16(4):551-61. PubMed ID: 12703973 [TBL] [Abstract][Full Text] [Related]
9. A novel nitroimidazole compound formed during the reaction of peroxynitrite with 2',3',5'-tri-O-acetyl-guanosine. Niles JC; Wishnok JS; Tannenbaum SR J Am Chem Soc; 2001 Dec; 123(49):12147-51. PubMed ID: 11734012 [TBL] [Abstract][Full Text] [Related]
10. Isolation of a MX-guanosine adduct formed at physiological conditions. Franzén R; Tanabe K; Morita M Chemosphere; 1998 Jun; 36(13):2803-8. PubMed ID: 9745706 [TBL] [Abstract][Full Text] [Related]
11. Substitution of p- and o-hydroxyphenyl radicals at the 8 position of purine nucleosides by reaction with mutagenic p- and o-diazoquinones. Kikugawa K; Kato T; Kojima K Mutat Res; 1992 Jul; 268(1):65-75. PubMed ID: 1378188 [TBL] [Abstract][Full Text] [Related]
13. A cyclic N7,C-8 guanine adduct of N-nitrosopyrrolidine (NPYR): formation in nucleic acids and excretion in the urine of NPYR-treated rats. Wang M; Hecht SS Chem Res Toxicol; 1997 Jul; 10(7):772-8. PubMed ID: 9250411 [TBL] [Abstract][Full Text] [Related]
14. Reaction of mucochloric and mucobromic acids with adenosine and cytidine: formation of chloro- and bromopropenal derivatives. Kronberg L; Asplund D; Mäki J; Sjöholm R Chem Res Toxicol; 1996 Dec; 9(8):1257-63. PubMed ID: 8951227 [TBL] [Abstract][Full Text] [Related]
15. Formation of conjugate adducts in the reactions of malonaldehyde-acetaldehyde and malonaldehyde-formaldehyde with guanosine. Pluskota-Karwatka D; Le Curieux F; Munter T; Sjöholm R; Kronberg L Chem Res Toxicol; 2005 Feb; 18(2):300-7. PubMed ID: 15720136 [TBL] [Abstract][Full Text] [Related]
16. Oxidation of guanosine derivatives by a platinum(IV) complex: internal electron transfer through cyclization. Choi S; Cooley RB; Voutchkova A; Leung CH; Vastag L; Knowles DE J Am Chem Soc; 2005 Feb; 127(6):1773-81. PubMed ID: 15701012 [TBL] [Abstract][Full Text] [Related]
17. Effect of substitution site upon the oxidation potentials of alkylanilines, the mutagenicities of N-hydroxyalkylanilines, and the conformations of alkylaniline-DNA adducts. Marques MM; Mourato LL; Amorim MT; Santos MA; Melchior WB; Beland FA Chem Res Toxicol; 1997 Nov; 10(11):1266-74. PubMed ID: 9403181 [TBL] [Abstract][Full Text] [Related]
19. Identification of an ethenoformyl adduct formed in the reaction of the potent bacterial mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone with guanosine. Munter T; Le Curieux F; Sjöholm R; Kronberg L Chem Res Toxicol; 1999 Jan; 12(1):46-52. PubMed ID: 9894017 [TBL] [Abstract][Full Text] [Related]
20. New syntheses of N-(guanosin-8-yl)-4-aminobiphenyl and its 5'-monophosphate. Lee MS; King CM Chem Biol Interact; 1981 Mar; 34(2):239-48. PubMed ID: 6257408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]