BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10525335)

  • 1. Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus.
    Schroeder KE; Condic ML; Eisenberg LM; Yost HJ
    Dev Biol; 1999 Oct; 214(2):288-97. PubMed ID: 10525335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple maternal influences on dorsal-ventral fate of Xenopus animal blastomeres.
    Pandur PD; Sullivan SA; Moody SA
    Dev Dyn; 2002 Dec; 225(4):581-7. PubMed ID: 12454934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of maternal axin in patterning the Xenopus embryo.
    Kofron M; Klein P; Zhang F; Houston DW; Schaible K; Wylie C; Heasman J
    Dev Biol; 2001 Sep; 237(1):183-201. PubMed ID: 11518515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification.
    Mei W; Jin Z; Lai F; Schwend T; Houston DW; King ML; Yang J
    Development; 2013 Jun; 140(11):2334-44. PubMed ID: 23615278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos.
    Tao Q; Yokota C; Puck H; Kofron M; Birsoy B; Yan D; Asashima M; Wylie CC; Lin X; Heasman J
    Cell; 2005 Mar; 120(6):857-71. PubMed ID: 15797385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effects of Vg1 and Wnt signals in the specification of dorsal mesoderm and endoderm.
    Cui Y; Tian Q; Christian JL
    Dev Biol; 1996 Nov; 180(1):22-34. PubMed ID: 8948571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-transcriptional regulation of Xwnt-8 expression is required for normal myogenesis during vertebrate embryonic development.
    Tian Q; Nakayama T; Dixon MP; Christian JL
    Development; 1999 Aug; 126(15):3371-80. PubMed ID: 10393116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain.
    Landesman Y; Sokol SY
    Mech Dev; 1997 May; 63(2):199-209. PubMed ID: 9203142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway.
    Marikawa Y; Li Y; Elinson RP
    Dev Biol; 1997 Nov; 191(1):69-79. PubMed ID: 9356172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition of Xwnt-11 mRNA from inactive form to polyribosomes in frogs during early embryogenesis.
    Shatilov DV; Pshennikova ES; Voronina AS
    Biochemistry (Mosc); 2003 Jul; 68(7):822-5. PubMed ID: 12946266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis.
    Cui Y; Brown JD; Moon RT; Christian JL
    Development; 1995 Jul; 121(7):2177-86. PubMed ID: 7635061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos.
    Dominguez I; Mizuno J; Wu H; Song DH; Symes K; Seldin DC
    Dev Biol; 2004 Oct; 274(1):110-24. PubMed ID: 15355792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis.
    Zohn IE; Brivanlou AH
    Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specification of anteroposterior axis by combinatorial signaling during Xenopus development.
    Carron C; Shi DL
    Wiley Interdiscip Rev Dev Biol; 2016; 5(2):150-68. PubMed ID: 26544673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. xnf7 functions in dorsal-ventral patterning of the Xenopus embryo.
    El-Hodiri HM; Shou W; Etkin LD
    Dev Biol; 1997 Oct; 190(1):1-17. PubMed ID: 9331327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical rotation and messenger RNA localization in Xenopus axis formation.
    Houston DW
    Wiley Interdiscip Rev Dev Biol; 2012; 1(3):371-88. PubMed ID: 23801488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A p38 MAPK-CREB pathway functions to pattern mesoderm in Xenopus.
    Keren A; Keren-Politansky A; Bengal E
    Dev Biol; 2008 Oct; 322(1):86-94. PubMed ID: 18675264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development.
    Sheets MD; Fox CA; Dowdle ME; Blaser SI; Chung A; Park S
    Adv Exp Med Biol; 2017; 953():49-82. PubMed ID: 27975270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially restricted translation of the xCR1 mRNA in Xenopus embryos.
    Zhang Y; Forinash KD; McGivern J; Fritz B; Dorey K; Sheets MD
    Mol Cell Biol; 2009 Jul; 29(13):3791-802. PubMed ID: 19364820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.