BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 10526095)

  • 1. Interactions of the systemic and brain renin-angiotensin systems in the control of drinking and the central mediation of pressor responses.
    Robinson MM; McLennan GP; Thunhorst RL; Johnson AK
    Brain Res; 1999 Sep; 842(1):55-61. PubMed ID: 10526095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of brain angiotensin in thirst and AVP release induced by hemorrhage.
    Phillips MI; Heininger F; Toffolo S
    Regul Pept; 1996 Oct; 66(1-2):3-11. PubMed ID: 8899885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the tissue renin-angiotensin system in the action of angiotensin-converting enzyme inhibitors.
    Tokita Y; Oda H; Franco-Saenz R; Mulrow PJ
    Proc Soc Exp Biol Med; 1995 Apr; 208(4):391-6. PubMed ID: 7700888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of angiotensin in the dipsogenic effect of bradykinin in rats.
    Rowland NE; Fregly MJ
    Pharmacol Biochem Behav; 1997 Aug; 57(4):699-705. PubMed ID: 9258997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies of the pharmacologic response to captopril in rats. I. Role of the renin-angiotensin system.
    Endoh M; Suzuki M; Katayama K; Kakemi M; Koizumi T
    J Pharmacobiodyn; 1989 Jan; 12(1):1-9. PubMed ID: 2542516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of captopril-induced drinking.
    Schiffrin EL; Genest J
    Am J Physiol; 1982 Jan; 242(1):R136-40. PubMed ID: 7036759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the renin-angiotensin system in drinking of seawater-adapted eels Anguilla japonica: a reevaluation.
    Takei Y; Tsuchida T
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R1105-11. PubMed ID: 10956272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of angiotensin-converting enzyme or tumor necrosis factor-α reverses maternal high-fat diet-induced sensitization of angiotensin II hypertension in male rat offspring.
    Wang XF; Li JD; Huo YL; Zhang YP; Fang ZQ; Wang HP; Peng W; Johnson AK; Xue B
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R351-R359. PubMed ID: 31746626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arterial pressure on drinking and urinary responses to intracerebroventricular angiotensin II.
    Thunhorst RL; Johnson AK
    Am J Physiol; 1993 Jan; 264(1 Pt 2):R211-7. PubMed ID: 8430881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AT1 receptor antagonist telmisartan administered peripherally inhibits central responses to angiotensin II in conscious rats.
    Gohlke P; Weiss S; Jansen A; Wienen W; Stangier J; Rascher W; Culman J; Unger T
    J Pharmacol Exp Ther; 2001 Jul; 298(1):62-70. PubMed ID: 11408526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local angiotensin II generation in the rat heart: role of renin uptake.
    Müller DN; Fischli W; Clozel JP; Hilgers KF; Bohlender J; Ménard J; Busjahn A; Ganten D; Luft FC
    Circ Res; 1998 Jan 9-23; 82(1):13-20. PubMed ID: 9440700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional evidence for subfornical organ-intrinsic conversion of angiotensin I to angiotensin II.
    Rauch M; Schmid HA
    Am J Physiol; 1999 Jun; 276(6):R1630-8. PubMed ID: 10362741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bladder angiotensin system in female rats: response to infusions of angiotensin I and the angiotensin converting enzyme inhibitor enalaprilat.
    Weaver-Osterholtz D; Reams G; De Vergel CF; Bauer JH
    J Urol; 2001 May; 165(5):1735-8. PubMed ID: 11342966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central injection of captopril inhibits the blood pressure response to intracerebroventricular choline.
    Isbil-Buyukcoskun N; Gulec G; Ozluk K; Ulus IH
    Braz J Med Biol Res; 2001 Jun; 34(6):815-20. PubMed ID: 11378673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drinking and changes in blood pressure in response to precursors, fragments and analogues of angiotensin II in the pigeon Columba livia.
    Evered MD; Fitzsimons JT
    J Physiol; 1981 Jan; 310():353-66. PubMed ID: 6164784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressor action and dipsogenicity induced by angiotensin II and III in rats.
    Wright JW; Morseth SL; Abhold RH; Harding JW
    Am J Physiol; 1985 Nov; 249(5 Pt 2):R514-21. PubMed ID: 4061676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blunted renal responses to angiotensin II infusion in lifetime captopril-treated spontaneously hypertensive rats.
    Wu JN; Tsai SY; Hsieh WY
    Chin J Physiol; 2001 Jun; 44(2):59-65. PubMed ID: 11530945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Captopril blocks the cardiac actions of centrally administered angiotensin I in the trout Oncorhynchus mykiss.
    Lancien F; Mimassi N; Mabin D; Le Mével JC
    Brain Res; 2004 May; 1007(1-2):116-23. PubMed ID: 15064142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation of pressor responses to intracerebroventricular angiotensin I by angiotensin converting enzyme inhibitors and their effects on systemic blood pressure in conscious rats.
    Baum T; Becker FT; Sybertz EJ
    Life Sci; 1983 Mar; 32(12):1297-303. PubMed ID: 6300578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain converting enzyme inhibition: a possible mechanism for the antihypertensive action of captopril in spontaneously hypertensive rats.
    Unger T; Kaufmann-Bühler I; Schölkens B; Ganten D
    Eur J Pharmacol; 1981 Apr; 70(4):467-78. PubMed ID: 6263638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.