These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 10526107)
1. Evidence for subnucleus interpolaris in craniofacial muscle pain mechanisms demonstrated by intramuscular injections with hypertonic saline. Ro JY; Capra NF Brain Res; 1999 Sep; 842(1):166-83. PubMed ID: 10526107 [TBL] [Abstract][Full Text] [Related]
2. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles. Capra NF; Ro JY Pain; 2000 May; 86(1-2):151-62. PubMed ID: 10779672 [TBL] [Abstract][Full Text] [Related]
3. Response properties of nociceptive and non-nociceptive neurons in the rat's trigeminal subnucleus caudalis (medullary dorsal horn) related to cutaneous and deep craniofacial afferent stimulation and modulation by diffuse noxious inhibitory controls. Hu JW Pain; 1990 Jun; 41(3):331-345. PubMed ID: 2388770 [TBL] [Abstract][Full Text] [Related]
4. Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the rat: cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls, and projections to the parabrachial area. Meng ID; Hu JW; Benetti AP; Bereiter DA J Neurophysiol; 1997 Jan; 77(1):43-56. PubMed ID: 9120584 [TBL] [Abstract][Full Text] [Related]
5. Responses of neurons in feline trigeminal subnucleus caudalis (medullary dorsal horn) to cutaneous, intraoral, and muscle afferent stimuli. Amano N; Hu JW; Sessle BJ J Neurophysiol; 1986 Feb; 55(2):227-43. PubMed ID: 3950689 [TBL] [Abstract][Full Text] [Related]
6. Differential responses of rostral subnucleus caudalis and upper cervical dorsal horn neurons to mechanical and chemical stimulation of the parotid gland in rats. Ogawa A; Meng ID; Ren K; Imamura Y; Iwata K Brain Res; 2006 Aug; 1106(1):123-133. PubMed ID: 16854383 [TBL] [Abstract][Full Text] [Related]
7. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline. Ro JY; Capra NF Pain; 2001 May; 92(1-2):117-27. PubMed ID: 11323133 [TBL] [Abstract][Full Text] [Related]
8. Effects of temporomandibular joint stimulation on nociceptive and nonnociceptive neurons of the cat's trigeminal subnucleus caudalis (medullary dorsal horn). Broton JG; Hu JW; Sessle BJ J Neurophysiol; 1988 May; 59(5):1575-89. PubMed ID: 3385474 [TBL] [Abstract][Full Text] [Related]
9. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. Hayashi H; Sumino R; Sessle BJ J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316 [TBL] [Abstract][Full Text] [Related]
10. Responses of feline trigeminal spinal tract nucleus neurons to stimulation of the middle meningeal artery and sagittal sinus. Davis KD; Dostrovsky JO J Neurophysiol; 1988 Feb; 59(2):648-66. PubMed ID: 3351579 [TBL] [Abstract][Full Text] [Related]
11. Responses of medullary dorsal horn neurons to corneal stimulation by CO(2) pulses in the rat. Hirata H; Hu JW; Bereiter DA J Neurophysiol; 1999 Nov; 82(5):2092-107. PubMed ID: 10561390 [TBL] [Abstract][Full Text] [Related]
12. The influence of pain on masseter spindle afferent discharge. Capra NF; Hisley CK; Masri RM Arch Oral Biol; 2007 Apr; 52(4):387-90. PubMed ID: 17126284 [TBL] [Abstract][Full Text] [Related]
13. Responses of trigeminal subnucleus interpolaris neurons to afferent inputs from deep oral structures. Ohya A Brain Res Bull; 1992 Dec; 29(6):773-81. PubMed ID: 1473011 [TBL] [Abstract][Full Text] [Related]
14. Comparison of responses of cutaneous nociceptive and nonnociceptive brain stem neurons in trigeminal subnucleus caudalis (medullary dorsal horn) and subnucleus oralis to natural and electrical stimulation of tooth pulp. Hu JW; Sessle BJ J Neurophysiol; 1984 Jul; 52(1):39-53. PubMed ID: 6747677 [TBL] [Abstract][Full Text] [Related]
15. Convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons in the first cervical dorsal horn. Mørch CD; Hu JW; Arendt-Nielsen L; Sessle BJ Eur J Neurosci; 2007 Jul; 26(1):142-54. PubMed ID: 17614945 [TBL] [Abstract][Full Text] [Related]
16. Nociceptive craniofacial muscle primary afferent neurons synapse in both the rostral and caudal brain stem. Dessem D; Moritani M; Ambalavanar R J Neurophysiol; 2007 Jul; 98(1):214-23. PubMed ID: 17493918 [TBL] [Abstract][Full Text] [Related]
17. Selective distribution and function of primary afferent nociceptive inputs from deep muscle tissue to the brainstem trigeminal transition zone. Wang H; Wei F; Dubner R; Ren K J Comp Neurol; 2006 Sep; 498(3):390-402. PubMed ID: 16871539 [TBL] [Abstract][Full Text] [Related]
18. Trigeminal pathways for hypertonic saline- and light-evoked corneal reflexes. Rahman M; Okamoto K; Thompson R; Bereiter DA Neuroscience; 2014 Sep; 277():716-23. PubMed ID: 25086311 [TBL] [Abstract][Full Text] [Related]
19. Effects of chemical stimulation of masseter muscle nociceptors on trigeminal motoneuron and interneuron activities during fictive mastication in the rabbit. Westberg -K; Clavelou P; Schwartz G; Lund PJ Pain; 1997 Dec; 73(3):295-308. PubMed ID: 9469519 [TBL] [Abstract][Full Text] [Related]
20. Stimulation of craniofacial muscle afferents induces prolonged facilitatory effects in trigeminal nociceptive brain-stem neurones. Hu JW; Sessle BJ; Raboisson P; Dallel R; Woda A Pain; 1992 Jan; 48(1):53-60. PubMed ID: 1738575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]