These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10526371)

  • 61. Fold recognition using sequence and secondary structure information.
    Koretke KK; Russell RB; Copley RR; Lupas AN
    Proteins; 1999; Suppl 3():141-8. PubMed ID: 10526363
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel fold recognition method using composite predicted secondary structures.
    An Y; Friesner RA
    Proteins; 2002 Aug; 48(2):352-66. PubMed ID: 12112702
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In silico Identification and Characterization of Protein-Ligand Binding Sites.
    Roche DB; McGuffin LJ
    Methods Mol Biol; 2016; 1414():1-21. PubMed ID: 27094282
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Automated large scale evaluation of protein structure predictions.
    Lackner P; Koppensteiner WA; Domingues FS; Sippl MJ
    Proteins; 1999; Suppl 3():7-14. PubMed ID: 10526347
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Template based protein structure modeling by global optimization in CASP11.
    Joo K; Joung I; Lee SY; Kim JY; Cheng Q; Manavalan B; Joung JY; Heo S; Lee J; Nam M; Lee IH; Lee SJ; Lee J
    Proteins; 2016 Sep; 84 Suppl 1():221-32. PubMed ID: 26329522
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A neural network approach to evaluate fold recognition results.
    Juan D; GraƱa O; Pazos F; Fariselli P; Casadio R; Valencia A
    Proteins; 2003 Mar; 50(4):600-8. PubMed ID: 12577266
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An attempt to analyse progress in fold recognition from CASP1 to CASP3.
    Sippl MJ; Lackner P; Domingues FS; Koppensteiner WA
    Proteins; 1999; Suppl 3():226-30. PubMed ID: 10526373
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A structural pattern-based method for protein fold recognition.
    Taylor WR; Jonassen I
    Proteins; 2004 Aug; 56(2):222-34. PubMed ID: 15211507
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Assessment of ligand binding site predictions in CASP10.
    Gallo Cassarino T; Bordoli L; Schwede T
    Proteins; 2014 Feb; 82 Suppl 2(0 2):154-63. PubMed ID: 24339001
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Assessment of fold recognition predictions in CASP6.
    Wang G; Jin Y; Dunbrack RL
    Proteins; 2005; 61 Suppl 7():46-66. PubMed ID: 16187346
    [TBL] [Abstract][Full Text] [Related]  

  • 71. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessment of refinement of template-based models in CASP11.
    Modi V; Dunbrack RL
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):260-81. PubMed ID: 27081793
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Princeton_TIGRESS 2.0: High refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment.
    Khoury GA; Smadbeck J; Kieslich CA; Koskosidis AJ; Guzman YA; Tamamis P; Floudas CA
    Proteins; 2017 Jun; 85(6):1078-1098. PubMed ID: 28241391
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11.
    Cao R; Bhattacharya D; Adhikari B; Li J; Cheng J
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):247-59. PubMed ID: 26369671
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessment of the model refinement category in CASP12.
    Hovan L; Oleinikovas V; Yalinca H; Kryshtafovych A; Saladino G; Gervasio FL
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):152-167. PubMed ID: 29071750
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Prediction of protein structure by simulating coarse-grained folding pathways: a preliminary report.
    Colubri A
    J Biomol Struct Dyn; 2004 Apr; 21(5):625-38. PubMed ID: 14769055
    [TBL] [Abstract][Full Text] [Related]  

  • 77. IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences.
    McGuffin LJ; Atkins JD; Salehe BR; Shuid AN; Roche DB
    Nucleic Acids Res; 2015 Jul; 43(W1):W169-73. PubMed ID: 25820431
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Assembling novel protein folds from super-secondary structural fragments.
    Jones DT; McGuffin LJ
    Proteins; 2003; 53 Suppl 6():480-5. PubMed ID: 14579336
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy.
    Ogorzalek TL; Hura GL; Belsom A; Burnett KH; Kryshtafovych A; Tainer JA; Rappsilber J; Tsutakawa SE; Fidelis K
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):202-214. PubMed ID: 29314274
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sustained performance of knowledge-based potentials in fold recognition.
    Domingues FS; Koppensteiner WA; Jaritz M; Prlic A; Weichenberger C; Wiederstein M; Floeckner H; Lackner P; Sippl MJ
    Proteins; 1999; Suppl 3():112-20. PubMed ID: 10526359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.