BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 10527415)

  • 1. LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes.
    Schmidt T
    Plant Mol Biol; 1999 Aug; 40(6):903-10. PubMed ID: 10527415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Non-LTR retrotransposons: LINEs and SINEs in plant genome].
    Cheng XD; Ling HQ
    Yi Chuan; 2006 Jun; 28(6):731-6. PubMed ID: 16818439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
    Zedek F; Smerda J; Smarda P; Bureš P
    BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome.
    Schmidt T; Kubis S; Heslop-Harrison JS
    Chromosome Res; 1995 Sep; 3(6):335-45. PubMed ID: 7551548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LTR-retrotransposons and inter-retrotransposon amplified polymorphism (IRAP) analysis in Lilium species.
    Lee SI; Kim JH; Park KC; Kim NS
    Genetica; 2015 Jun; 143(3):343-52. PubMed ID: 25787319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long terminal repeat retrotransposons of Oryza sativa.
    McCarthy EM; Liu J; Lizhi G; McDonald JF
    Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The landscape and structural diversity of LTR retrotransposons in Musa genome.
    Nouroz F; Noreen S; Ahmad H; Heslop-Harrison JSP
    Mol Genet Genomics; 2017 Oct; 292(5):1051-1067. PubMed ID: 28601922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae).
    Kolano B; Bednara E; Weiss-Schneeweiss H
    Plant Cell Rep; 2013 Oct; 32(10):1575-88. PubMed ID: 23754338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling.
    Dewannieux M; Heidmann T
    Cytogenet Genome Res; 2005; 110(1-4):35-48. PubMed ID: 16093656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics.
    Thomas-Bulle C; Piednoël M; Donnart T; Filée J; Jollivet D; Bonnivard É
    BMC Genomics; 2018 Nov; 19(1):821. PubMed ID: 30442098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural features and mechanism of translocation of non-LTR retrotransposons in Candida albicans.
    Jiang J; Zhao L; Yan L; Zhang L; Cao Y; Wang Y; Jiang Y; Yan T; Cao Y
    Virulence; 2014 Feb; 5(2):245-52. PubMed ID: 24317340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice.
    Wang H; Liu JS
    BMC Genomics; 2008 Aug; 9():382. PubMed ID: 18691433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.
    Vitte C; Panaud O
    Cytogenet Genome Res; 2005; 110(1-4):91-107. PubMed ID: 16093661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome.
    Moisy C; Garrison KE; Meredith CP; Pelsy F
    BMC Genomics; 2008 Oct; 9():469. PubMed ID: 18842156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes.
    de Souza TB; Chaluvadi SR; Johnen L; Marques A; González-Elizondo MS; Bennetzen JL; Vanzela ALL
    Ann Bot; 2018 Aug; 122(2):279-290. PubMed ID: 30084890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes.
    Wessler SR; Bureau TE; White SE
    Curr Opin Genet Dev; 1995 Dec; 5(6):814-21. PubMed ID: 8745082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of jute LTR retrotransposons:: Their abundance, heterogeneity and transcriptional activity.
    Ahmed S; Shafiuddin M; Azam MS; Islam MS; Ghosh A; Khan H
    Mob Genet Elements; 2011 May; 1(1):18-28. PubMed ID: 22016842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula.
    Macas J; Neumann P; Navrátilová A
    BMC Genomics; 2007 Nov; 8():427. PubMed ID: 18031571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.