These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10527732)

  • 1. Chromatographic methods to study protein-protein interactions.
    Beeckmans S
    Methods; 1999 Oct; 19(2):278-305. PubMed ID: 10527732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of protein-protein interactions by simulation of small-zone gel filtration chromatography.
    Wilton R; Myatt EA; Stevens FJ
    Methods Mol Biol; 2004; 261():137-54. PubMed ID: 15064454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From gel filtration to biosensor technology: the development of chromatography for the characterization of protein interactions.
    Winzor DJ
    J Mol Recognit; 2000; 13(5):279-98. PubMed ID: 10992291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid phase proteomics: dramatic reinforcement of very weak protein-protein interactions.
    Fuentes M; Mateo C; Pessela BC; Batalla P; Fernandez-Lafuente R; Guisán JM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):243-50. PubMed ID: 17035103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilized enzymes as tools for the demonstration of metabolon formation. A short overview.
    Beeckmans S; Van Driessche E; Kanarek L
    J Mol Recognit; 1993 Dec; 6(4):195-204. PubMed ID: 7917415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of pure and immunoreactive virus-like particles using gel filtration chromatography following immobilized metal ion affinity chromatography.
    Cheng YS; Lee MS; Lai SY; Doong SR; Wang MY
    Biotechnol Prog; 2001; 17(2):318-25. PubMed ID: 11312710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of phosphoproteins for proteomic analysis using immobilized Fe(III)-affinity adsorption chromatography.
    Guerrera IC; Predic-Atkinson J; Kleiner O; Soskic V; Godovac-Zimmermann J
    J Proteome Res; 2005; 4(5):1545-53. PubMed ID: 16212405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of ligands for affinity chromatography using quartz crystal biosensor.
    Liu Y; Tang X; Liu F; Li K
    Anal Chem; 2005 Jul; 77(13):4248-56. PubMed ID: 15987134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing protein-protein complexes at equilibrium: the holdup comparative chromatographic retention assay.
    Charbonnier S; Zanier K; Masson M; Travé G
    Protein Expr Purif; 2006 Nov; 50(1):89-101. PubMed ID: 16884919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative sample preparation prior to two-dimensional electrophoresis protein analysis on solid lipid nanoparticles.
    Göppert TM; Müller RH
    Electrophoresis; 2004 Jan; 25(1):134-40. PubMed ID: 14730578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Chromatographic and electrophoretic methods of determining the parameters of protein-ligand interaction].
    Kozik A
    Postepy Biochem; 1983; 29(1):33-52. PubMed ID: 6356099
    [No Abstract]   [Full Text] [Related]  

  • 12. Rational design of affinity peptide ligand by flexible docking simulation.
    Liu FF; Wang T; Dong XY; Sun Y
    J Chromatogr A; 2007 Mar; 1146(1):41-50. PubMed ID: 17298835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly.
    Robinson JC; Kerjan P; Mirande M
    J Mol Biol; 2000 Dec; 304(5):983-94. PubMed ID: 11124041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting protein-protein interactions by gel filtration chromatography.
    Bai Y
    Methods Mol Biol; 2015; 1278():223-32. PubMed ID: 25859952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of enzyme associations by countermigration electrophoresis in agarose gel.
    Ashmarina LI; Pshezhetsky AV; Spivey HO; Potier M
    Anal Biochem; 1994 Jun; 219(2):349-55. PubMed ID: 8080091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakthrough model of recombinant human-like collagen in immobilized metal affinity chromatography.
    Wang XJ; Fan DD; Luo YE
    Appl Biochem Biotechnol; 2009 Aug; 158(2):262-76. PubMed ID: 18779935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes.
    Pitson SM; D'andrea RJ; Vandeleur L; Moretti PA; Xia P; Gamble JR; Vadas MA; Wattenberg BW
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):429-41. PubMed ID: 10947957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of dynamic adsorption behavior of large-size protein-bearing particles.
    Kalashnikova IV; Ivanova ND; Evseeva TG; Menshikova AY; Vlakh EG; Tennikova TB
    J Chromatogr A; 2007 Mar; 1144(1):40-7. PubMed ID: 17116306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supermacroporous cryogel matrix for integrated protein isolation. Immobilized metal affinity chromatographic purification of urokinase from cell culture broth of a human kidney cell line.
    Kumar A; Bansal V; Andersson J; Roychoudhury PK; Mattiasson B
    J Chromatogr A; 2006 Jan; 1103(1):35-42. PubMed ID: 16368104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protein-protein binding assay using coated microtitre plates: increased throughput, reproducibility and speed compared to bead-based assays.
    Craig TJ; Ciufo LF; Morgan A
    J Biochem Biophys Methods; 2004 Jul; 60(1):49-60. PubMed ID: 15236910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.