BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10527930)

  • 1. Sulphation of lithocholic acid in the colon-carcinoma cell line CaCo-2.
    Halvorsen B; Kase BF; Prydz K; Garagozlian S; Andresen MS; Kolset SO
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):533-9. PubMed ID: 10527930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithocholic acid and sulphated lithocholic acid differ in the ability to promote matrix metalloproteinase secretion in the human colon cancer cell line CaCo-2.
    Halvorsen B; Staff AC; Ligaarden S; Prydz K; Kolset SO
    Biochem J; 2000 Jul; 349(Pt 1):189-93. PubMed ID: 10861227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro.
    Hughes R; Kurth MJ; McGilligan V; McGlynn H; Rowland I
    Nutr Cancer; 2008; 60(2):259-66. PubMed ID: 18444159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative formation of lithocholic acid from chenodeoxycholic and ursodeoxycholic acids in the colon.
    Bazzoli F; Fromm H; Sarva RP; Sembrat RF; Ceryak S
    Gastroenterology; 1982 Oct; 83(4):753-60. PubMed ID: 7106506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antral mucosal bile acids in two types of chronic atrophic gastritis.
    Kurtz WJ; Dikimli A; Leuschner U; Classen M
    Tokai J Exp Clin Med; 1988 Feb; 13(1):31-6. PubMed ID: 3232160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid.
    Májer F; Sharma R; Mullins C; Keogh L; Phipps S; Duggan S; Kelleher D; Keely S; Long A; Radics G; Wang J; Gilmer JF
    Bioorg Med Chem; 2014 Jan; 22(1):256-68. PubMed ID: 24332653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfation of bile salts: a new metabolic pathway.
    Stiehl A
    Digestion; 1974; 11(5-6):406-13. PubMed ID: 4618540
    [No Abstract]   [Full Text] [Related]  

  • 8. [Bile acid metabolism in hepatic tissue of healthy subjects and in patients with liver cirrhosis].
    Erb W; Haase A; Leuschner U
    Z Gastroenterol; 1973 Apr; 11(3):203-16. PubMed ID: 4803420
    [No Abstract]   [Full Text] [Related]  

  • 9. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces.
    Fukiya S; Arata M; Kawashima H; Yoshida D; Kaneko M; Minamida K; Watanabe J; Ogura Y; Uchida K; Itoh K; Wada M; Ito S; Yokota A
    FEMS Microbiol Lett; 2009 Apr; 293(2):263-70. PubMed ID: 19243441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of gallbladder in gallstone formation.
    Nakayama F; van der Linden W
    Acta Chir Scand; 1974; 140(1):45-9. PubMed ID: 4819022
    [No Abstract]   [Full Text] [Related]  

  • 11. [Formation of bile acid sulfate esters in perfused rat livers following bile duct occlusion].
    Liersch M; Stiehl A
    Z Gastroenterol; 1974 Mar; 12(2):131-4. PubMed ID: 4825092
    [No Abstract]   [Full Text] [Related]  

  • 12. Faecal bile acids and the irritable colon syndrome.
    Flynn M; Hammond P; Darby C; Hyland J; Taylor I
    Digestion; 1981; 22(3):144-9. PubMed ID: 7286462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia].
    Edenharder R; Deser HJ
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 174(1-2):91-104. PubMed ID: 7324622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered bile acid metabolism in childhood functional constipation: inactivation of secretory bile acids by sulfation in a subset of patients.
    Hofmann AF; Loening-Baucke V; Lavine JE; Hagey LR; Steinbach JH; Packard CA; Griffin TL; Chatfield DA
    J Pediatr Gastroenterol Nutr; 2008 Nov; 47(5):598-606. PubMed ID: 18955863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical synthesis of 24-beta-D-galactopyranosides of bile acids: a new type of bile acid conjugates in human urine.
    Kakiyama G; Sadakiyo S; Iida T; Mushiake K; Goto T; Mano N; Goto J; Nambara T
    Chem Phys Lipids; 2005 Apr; 134(2):141-50. PubMed ID: 15784232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue bile acids in patients with colon cancer and colonic polyps.
    Gelb AM; McSherry CK; Sadowsky JR; Mosbach EH
    Am J Gastroenterol; 1982 May; 77(5):314-7. PubMed ID: 7081188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells.
    Merchant NB; Rogers CM; Trivedi B; Morrow J; Coffey RJ
    Surgery; 2005 Sep; 138(3):415-21. PubMed ID: 16213893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytotoxicity of hydrophobic bile acids is ameliorated by more hydrophilic bile acids in intestinal cell lines IEC-6 and Caco-2.
    Araki Y; Andoh A; Bamba H; Yoshikawa K; Doi H; Komai Y; Higuchi A; Fujiyama Y
    Oncol Rep; 2003; 10(6):1931-6. PubMed ID: 14534721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Enhancement of growth of rat liver cell cultures by lithocholic acid].
    Jeannin JF; Chessebeuf M; Martin M; Lagneau A
    C R Seances Soc Biol Fil; 1978; 172(3):459-64. PubMed ID: 153173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex feedback regulation of bile acid synthesis in the hamster: the role of newly synthesized cholesterol.
    Scheibner J; Fuchs M; Hörmann E; Stange EF
    Hepatology; 1999 Jul; 30(1):230-7. PubMed ID: 10385661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.