BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 10528027)

  • 1. Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays.
    Bubendorf L; Kolmer M; Kononen J; Koivisto P; Mousses S; Chen Y; Mahlamäki E; Schraml P; Moch H; Willi N; Elkahloun AG; Pretlow TG; Gasser TC; Mihatsch MJ; Sauter G; Kallioniemi OP
    J Natl Cancer Inst; 1999 Oct; 91(20):1758-64. PubMed ID: 10528027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays.
    Mousses S; Bubendorf L; Wagner U; Hostetter G; Kononen J; Cornelison R; Goldberger N; Elkahloun AG; Willi N; Koivisto P; Ferhle W; Raffeld M; Sauter G; Kallioniemi OP
    Cancer Res; 2002 Mar; 62(5):1256-60. PubMed ID: 11888886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Androgen-dependent and -independent human prostate xenograft tumors as models for drug activity evaluation.
    Chen CT; Gan Y; Au JL; Wientjes MG
    Cancer Res; 1998 Jul; 58(13):2777-83. PubMed ID: 9661891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cytogenetic studies of a serially transplanted primary prostatic carcinoma xenograft (CWR22) and four relapsed tumors.
    Kochera M; Depinet TW; Pretlow TP; Giaconia JM; Edgehouse NL; Pretlow TG; Schwartz S
    Prostate; 1999 Sep; 41(1):7-11. PubMed ID: 10440870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer.
    Porkka KP; Tammela TL; Vessella RL; Visakorpi T
    Genes Chromosomes Cancer; 2004 Jan; 39(1):1-10. PubMed ID: 14603436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression and gene amplification of BAG-1L in hormone-refractory prostate cancer.
    Mäki HE; Saramäki OR; Shatkina L; Martikainen PM; Tammela TL; van Weerden WM; Vessella RL; Cato AC; Visakorpi T
    J Pathol; 2007 Aug; 212(4):395-401. PubMed ID: 17503439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer.
    Saramäki OR; Tammela TL; Martikainen PM; Vessella RL; Visakorpi T
    Genes Chromosomes Cancer; 2006 Jul; 45(7):639-45. PubMed ID: 16575874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression profiling reveals overexpression of TSPAN13 in prostate cancer.
    Arencibia JM; Martín S; Pérez-Rodríguez FJ; Bonnin A
    Int J Oncol; 2009 Feb; 34(2):457-63. PubMed ID: 19148481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling and verification of gene expression patterns in normal and malignant human prostate tissues by cDNA microarray analysis.
    Chaib H; Cockrell EK; Rubin MA; Macoska JA
    Neoplasia; 2001; 3(1):43-52. PubMed ID: 11326315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of AR associated protein 55 (ARA55) and androgen receptor in prostate cancer.
    Miyoshi Y; Ishiguro H; Uemura H; Fujinami K; Miyamoto H; Miyoshi Y; Kitamura H; Kubota Y
    Prostate; 2003 Sep; 56(4):280-6. PubMed ID: 12858356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling.
    Mousses S; Wagner U; Chen Y; Kim JW; Bubendorf L; Bittner M; Pretlow T; Elkahloun AG; Trepel JB; Kallioniemi OP
    Oncogene; 2001 Oct; 20(46):6718-23. PubMed ID: 11709706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CWR22 xenograft as an ex vivo human tumor model for prostate cancer gene therapy.
    Cheng L; Sun J; Pretlow TG; Culp J; Yang NS
    J Natl Cancer Inst; 1996 May; 88(9):607-11. PubMed ID: 8609662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events.
    Sirotnak FM; She Y; Khokhar NZ; Hayes P; Gerald W; Scher HI
    Mol Carcinog; 2004 Nov; 41(3):150-63. PubMed ID: 15390081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1.
    Amler LC; Agus DB; LeDuc C; Sapinoso ML; Fox WD; Kern S; Lee D; Wang V; Leysens M; Higgins B; Martin J; Gerald W; Dracopoli N; Cordon-Cardo C; Scher HI; Hampton GM
    Cancer Res; 2000 Nov; 60(21):6134-41. PubMed ID: 11085537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology.
    Rubin MA; Mucci NR; Figurski J; Fecko A; Pienta KJ; Day ML
    Hum Pathol; 2001 Jul; 32(7):690-7. PubMed ID: 11486167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer.
    Rocchi P; So A; Kojima S; Signaevsky M; Beraldi E; Fazli L; Hurtado-Coll A; Yamanaka K; Gleave M
    Cancer Res; 2004 Sep; 64(18):6595-602. PubMed ID: 15374973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of IGBFB2 is a marker for malignant transformation in prostate epithelium.
    Richardsen E; Ukkonen T; Bjørnsen T; Mortensen E; Egevad L; Busch C
    Virchows Arch; 2003 Apr; 442(4):329-35. PubMed ID: 12684767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cDNA microarray analysis of pigment epithelium-derived factor-regulated gene expression profile in prostate carcinoma cells.
    Liu W; Wu Z; Guan M; Lu Y
    Int J Urol; 2009 Mar; 16(3):323-8. PubMed ID: 19207613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression patterns of potential therapeutic targets in prostate cancer.
    Zellweger T; Ninck C; Bloch M; Mirlacher M; Koivisto PA; Helin HJ; Mihatsch MJ; Gasser TC; Bubendorf L
    Int J Cancer; 2005 Feb; 113(4):619-28. PubMed ID: 15472903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors.
    Kiyama S; Morrison K; Zellweger T; Akbari M; Cox M; Yu D; Miyake H; Gleave ME
    Cancer Res; 2003 Jul; 63(13):3575-84. PubMed ID: 12839944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.