These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10528091)

  • 1. Kinetics and mechanism of degradation of klerval, a pseudo-tetrapeptide.
    Won CM; Molnar TE; Windisch VL; McKean RE
    Int J Pharm; 1999 Nov; 190(1):1-11. PubMed ID: 10528091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
    Oliyai C; Borchardt RT
    Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epimerization and hydrolysis of dalvastatin, a new hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor.
    Won CM
    Pharm Res; 1994 Jan; 11(1):165-70. PubMed ID: 8140049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation and epimerization kinetics of moxalactam in aqueous solution.
    Hashimoto N; Tasaki T; Tanaka H
    J Pharm Sci; 1984 Mar; 73(3):369-73. PubMed ID: 6716246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation kinetics of an aspartyl-tripeptide-derived diketopiperazine under forced conditions.
    Brückner C; Fahr A; Imhof D; Scriba GK
    J Pharm Sci; 2012 Nov; 101(11):4178-90. PubMed ID: 22899465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of paclitaxel and related compounds in aqueous solutions II: Nonepimerization degradation under neutral to basic pH conditions.
    Tian J; Stella VJ
    J Pharm Sci; 2008 Aug; 97(8):3100-8. PubMed ID: 17963215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of paclitaxel and related compounds in aqueous solutions I: epimerization.
    Tian J; Stella VJ
    J Pharm Sci; 2008 Mar; 97(3):1224-35. PubMed ID: 17680660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide.
    Patel K; Borchardt RT
    Pharm Res; 1990 Jul; 7(7):703-11. PubMed ID: 2395797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epimer interconversion, isomerization, and hydrolysis of tetrahydrouridine: implications for cytidine deaminase inhibition.
    Xiang TX; Niemi R; Bummer P; Anderson BD
    J Pharm Sci; 2003 Oct; 92(10):2027-39. PubMed ID: 14502542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanism-based kinetic analysis of succinimide-mediated deamidation, racemization, and covalent adduct formation in a model peptide in amorphous lyophiles.
    Dehart MP; Anderson BD
    J Pharm Sci; 2012 Sep; 101(9):3096-109. PubMed ID: 22271437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide Gly-Phe-Asp-GlyOH in alkaline solution.
    Brückner C; Imhof D; Scriba GK
    J Pharm Biomed Anal; 2013 Mar; 76():96-103. PubMed ID: 23298912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides.
    Oliyai C; Borchardt RT
    Pharm Res; 1994 May; 11(5):751-8. PubMed ID: 8058648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isomerization and epimerization of the aspartyl tetrapeptide Ala-Phe-Asp-GlyOH at pH 10-A CE study.
    Brückner C; Bunz SC; Imhof D; Neusüss C; Scriba GK
    Electrophoresis; 2013 Sep; 34(18):2666-73. PubMed ID: 23533053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of aspartic acid and asparagine residues in human growth hormone-releasing factor.
    Bongers J; Heimer EP; Lambros T; Pan YC; Campbell RM; Felix AM
    Int J Pept Protein Res; 1992 Apr; 39(4):364-74. PubMed ID: 1428526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deamidation via cyclic imide in asparaginyl peptides.
    Capasso S; Mazzarella L; Sica F; Zagari A
    Pept Res; 1989; 2(2):195-200. PubMed ID: 2520758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of aspartic acid isomerization and enantiomerization in model aspartyl tripeptides under forced conditions.
    Conrad U; Fahr A; Scriba GK
    J Pharm Sci; 2010 Oct; 99(10):4162-73. PubMed ID: 20737625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides.
    Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT
    J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preformulation stability studies of the new dipeptide angiotensin-converting enzyme inhibitor RS-10029.
    Gu L; Strickley RG
    Pharm Res; 1988 Dec; 5(12):765-71. PubMed ID: 3247286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis and epimerization kinetics of hetacillin in aqueous solution.
    Tsuji A; Itatani Y; Yamana T
    J Pharm Sci; 1977 Jul; 66(7):1004-9. PubMed ID: 18591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.