These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1052854)

  • 1. [Degradation of steroids. XIV. Synthesis of [1-14C]-succinic acid and [5-14C]-levulinic acid from 7a-methyl-5,6,7,7a-tetrahydroindan-[5-14C]-1,5-dion-4-(3-propionic acid-[1-14C]) by Nocardia opaca].
    Schubert K; Ritter F; Sorkina T; Böhme KH; Hörhold C
    J Steroid Biochem; 1975; 6(11-12):1501-4. PubMed ID: 1052854
    [No Abstract]   [Full Text] [Related]  

  • 2. [Catabolism of steroids. IX. Metabolism of the C-D-fragment 7a-methyl-l-acetyl-perhydroindan-5-on-4 alpha-(3-propionic acid) in the baboon].
    Schubert K; Ritter F; Gontscharow NP
    Endokrinologie; 1970; 56(2):164-71. PubMed ID: 4992265
    [No Abstract]   [Full Text] [Related]  

  • 3. Microbial metabolism of tetra- and hexahydroindan-propionic acid derivatives.
    Kondo E; Stein B; Sih CJ
    Biochim Biophys Acta; 1969 Jan; 176(1):135-45. PubMed ID: 5766014
    [No Abstract]   [Full Text] [Related]  

  • 4. Microbiological degradation of bile acids. Metabolites formed from 3-(3a alpha-hexahydro-7a beta-methyl-1,5-dioxoindan-4 alpha-yl) propionic acid by Streptomyces rubescens.
    Hashimoto S; Hayakawa S
    Biochem J; 1977 Jun; 164(3):715-26. PubMed ID: 883963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of 5-pregnene-3 , 20 -diol by a Nocardia sp. Some factors influencing the production of pregnendiol-secoacid.
    Tan TL; Strijewski A; Wagner F
    Arch Mikrobiol; 1972; 87(3):249-56. PubMed ID: 4640357
    [No Abstract]   [Full Text] [Related]  

  • 6. [Formation of alpha-ketoglutaric acid and succinic acid during microbial decomposition of the sterane structure].
    Schubert K; Böhme KH; Hörhold C
    Acta Biol Med Ger; 1967; 18(2):295-7. PubMed ID: 5586808
    [No Abstract]   [Full Text] [Related]  

  • 7. Labelled acetone and levulinic acid are formed when [14C]acetate is being converted to mycophenolic acid in Penicillium brevicompactum.
    Nulton CP; Campbell IM
    Can J Microbiol; 1978 Feb; 24(2):199-201. PubMed ID: 647475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiological degradation of bile acids. The preparation of hexahydroindane derivatives as substrates for studying cholic acid degradation.
    Hayakawa S; Takata T; Fujiwara T; Hashimoto S
    Biochem J; 1977 Jun; 164(3):709-14. PubMed ID: 883962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on rat catalase. VII. Double-labeling of catalase by 14C-leucine and 3H-delta-aminolevulinic acid.
    Higashi T; Kawamata F; Sakamoto T
    J Biochem; 1974 Oct; 76(4):703-8. PubMed ID: 4436284
    [No Abstract]   [Full Text] [Related]  

  • 10. Bacterial decomposition of synthetic 14C-labeled lignin and lignin monomer derivatives.
    Gradziel K; Haider K; Kochmańska J; Malarczyk E; Trojanowski J
    Acta Microbiol Pol; 1978; 27(2):103-9. PubMed ID: 80922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent decrease of enzymic activities concerned with the synthesis of coenzyme B 12 and of propionic acid in propionibacteria.
    Menon IA; Shemin D
    Arch Biochem Biophys; 1967 Aug; 121(2):304-10. PubMed ID: 6057100
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxidation of propionic acid by Nocardia corallina.
    MARTIN JK; BATT RD
    J Bacteriol; 1957 Sep; 74(3):359-64. PubMed ID: 13475250
    [No Abstract]   [Full Text] [Related]  

  • 13. [Pharmacokinetics of methindion--a new anticonvulsant].
    Gilev AP; Koptelova MN; Shafro EA
    Biull Eksp Biol Med; 1974 Oct; 78(10):59-61. PubMed ID: 4461122
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanisms of steroid oxidation by microorganisms. XIV. Pathway of cholesterol side-chain degradation.
    Sih CJ; Tai HH; Tsong YY; Lee SS; Coombe RG
    Biochemistry; 1968 Feb; 7(2):808-18. PubMed ID: 4296193
    [No Abstract]   [Full Text] [Related]  

  • 15. Incorporation of 14C-leucine and 3H-delta-aminolevulinic acid into catalase of liver and kidney.
    Higashi T; Kawamata F; Sakamoto T
    J Biochem; 1973 Nov; 74(5):1061-3. PubMed ID: 4770368
    [No Abstract]   [Full Text] [Related]  

  • 16. Degradation of steroids by a Nocardia sp. grown on hydrocarbons or on glucose.
    Probst M; Strijewski A; Tan TL; Wagner F
    Biotechnol Bioeng Symp; 1973; 0(4-1):217-24. PubMed ID: 4802440
    [No Abstract]   [Full Text] [Related]  

  • 17. Potential antiinflammatory agents. V. Synthesis of metabolites of 6-chloro-5-cyclohexylindan-1-carboxylic acid (TAI-284) using microbiological hydroxylation.
    Kishimoto S; Sugino H; Tanaka K; Kakinuma A; Noguchi S
    Chem Pharm Bull (Tokyo); 1976 Apr; 24(4):584-90. PubMed ID: 1084790
    [No Abstract]   [Full Text] [Related]  

  • 18. Rifamycin biosynthesis: further studies on origin of the ansa chain and chromophore.
    Karlsson A; Sartori G; White RJ
    Eur J Biochem; 1974 Sep; 47(2):251-6. PubMed ID: 4415635
    [No Abstract]   [Full Text] [Related]  

  • 19. [Accumulation of free extracellular amino acids by Pseudomonas liquefaciens].
    Shaposhnikov VN; Orlova IG
    Dokl Akad Nauk SSSR; 1966 Apr; 167(4):919-22. PubMed ID: 5997280
    [No Abstract]   [Full Text] [Related]  

  • 20. Labelling of chlorophylls and precursors by [2-14C]glycine and 2-[1-14C]oxoglutarate in Rhodopseudomonas spheroides and Zea mays. Resolution of the C5 and Shemin pathways of 5-aminolaevulinate biosynthesis by thin-layer radiochromatography.
    Porra RJ
    Eur J Biochem; 1986 Apr; 156(1):111-21. PubMed ID: 3485524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.