These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10529300)

  • 21. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neural network model for reconstructing EMG signals from eight shoulder muscles: consequences for rehabilitation robotics and biofeedback.
    Matheson Rittenhouse D; Abdullah HA; John Runciman R; Basir O
    J Biomech; 2006; 39(10):1924-32. PubMed ID: 15993412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Individual muscle control using an exoskeleton robot for muscle function testing.
    Ueda J; Ming D; Krishnamoorthy V; Shinohara M; Ogasawara T
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):339-50. PubMed ID: 20363684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS; Moran DW
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A neuro-mechanical transducer model for controlling joint rotations and limb movements.
    Laczkó J; Kerry W; Rodolfo L
    Ideggyogy Sz; 2006 Jan; 59(1-2):32-43. PubMed ID: 16491570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Study on the surface EMG pattern classification with BP neural networks].
    Wang R; Huang C; Li B; Jin D; Zhang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 1998 Mar; 22(2):63-6. PubMed ID: 12016830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sloped muscle excitation waveforms improve the accuracy of forward dynamic simulations.
    Camilleri MJ; Hull ML; Hakansson N
    J Biomech; 2007; 40(7):1423-32. PubMed ID: 16949082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A neuromusculoskeletal model to simulate the constant angular velocity elbow extension test of spasticity.
    Koo TK; Mak AF
    Med Eng Phys; 2006 Jan; 28(1):60-9. PubMed ID: 15908257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of probabilistic methods to predict muscle activity: implications for neuroprosthetics.
    Johnson LA; Fuglevand AJ
    J Neural Eng; 2009 Oct; 6(5):055008. PubMed ID: 19721180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Restoration of elbow joint flexion using pectoral muscle transfer in patients with arthrogryposis multiplex congenita. Part I: surgical method, rehabilitation and clinical results].
    Chomiak J; Dungl P
    Acta Chir Orthop Traumatol Cech; 2002; 69(6):333-43. PubMed ID: 12587494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups.
    Lilly JH; Quesada PM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):349-59. PubMed ID: 15473198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling investigation of learning a fast elbow flexion in the horizontal plane--prediction of muscle forces and motor units action.
    Raikova RT; Gabriel DA; Aladjov HTs
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):211-9. PubMed ID: 17132529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning to walk with a robotic ankle exoskeleton.
    Gordon KE; Ferris DP
    J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.