These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 10529388)

  • 1. The importance of the putative helices 4 and 5 of human vitamin D(3) receptor for conformation and ligand binding.
    Väisänen S; Duchier C; Rouvinen J; Mäenpää PH
    Biochem Biophys Res Commun; 1999 Oct; 264(2):478-82. PubMed ID: 10529388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide.
    Vanhooke JL; Benning MM; Bauer CB; Pike JW; DeLuca HF
    Biochemistry; 2004 Apr; 43(14):4101-10. PubMed ID: 15065852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional modeling of and ligand docking to vitamin D receptor ligand binding domain.
    Yamamoto K; Masuno H; Choi M; Nakashima K; Taga T; Ooizumi H; Umesono K; Sicinska W; VanHooke J; DeLuca HF; Yamada S
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1467-72. PubMed ID: 10677485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative helices 3 and 5 of the human vitamin D3 receptor are important for the binding of calcitriol.
    Väisänen S; Rouvinen J; Mäenpää PH
    FEBS Lett; 1998 Nov; 440(1-2):203-7. PubMed ID: 9862455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D receptor: ligand recognition and allosteric network.
    Yamamoto K; Abe D; Yoshimoto N; Choi M; Yamagishi K; Tokiwa H; Shimizu M; Makishima M; Yamada S
    J Med Chem; 2006 Feb; 49(4):1313-24. PubMed ID: 16480267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the vitamin D nuclear receptor ligand binding domain in complex with a locked side chain analog of calcitriol.
    Rochel N; Hourai S; Pérez-García X; Rumbo A; Mourino A; Moras D
    Arch Biochem Biophys; 2007 Apr; 460(2):172-6. PubMed ID: 17346665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling, affinity labeling, and site-directed mutagenesis define the key points of interaction between the ligand-binding domain of the vitamin D nuclear receptor and 1 alpha,25-dihydroxyvitamin D3.
    Swamy N; Xu W; Paz N; Hsieh JC; Haussler MR; Maalouf GJ; Mohr SC; Ray R
    Biochemistry; 2000 Oct; 39(40):12162-71. PubMed ID: 11015194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural investigation of the ligand binding domain of the zebrafish VDR in complexes with 1alpha,25(OH)2D3 and Gemini: purification, crystallization and preliminary X-ray diffraction analysis.
    Ciesielski F; Rochel N; Mitschler A; Kouzmenko A; Moras D
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):55-9. PubMed ID: 15225747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evaluation of the agonistic action of a vitamin D analog with two side chains binding to the nuclear vitamin D receptor.
    Väisänen S; Peräkylä M; Kärkkäinen JI; Uskokovic MR; Carlberg C
    Mol Pharmacol; 2003 Jun; 63(6):1230-7. PubMed ID: 12761332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and preliminary crystallographic characterization of the vitamin D sterol- and actin-binding by human vitamin D-binding protein.
    Swamy N; Head JF; Weitz D; Ray R
    Arch Biochem Biophys; 2002 Jun; 402(1):14-23. PubMed ID: 12051678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural basis for the species-specific antagonism of 26,23-lactones on vitamin D signaling.
    Peräkylä M; Molnár F; Carlberg C
    Chem Biol; 2004 Aug; 11(8):1147-56. PubMed ID: 15324816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model structures of the N-methyl-D-aspartate receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands.
    Moretti L; Pentikäinen OT; Settimo L; Johnson MS
    J Struct Biol; 2004 Mar; 145(3):205-15. PubMed ID: 14960371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alanine scanning mutational analysis of the ligand binding pocket of the human Vitamin D receptor.
    Yamamoto K; Choi M; Abe D; Shimizu M; Yamada S
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):282-5. PubMed ID: 17223344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of the Vitamin D sterol-Vitamin D receptor (VDR) conformational ensemble model.
    Mizwicki MT; Bishop JE; Norman AW
    Steroids; 2005; 70(5-7):464-71. PubMed ID: 15862832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand affinity, homodimerization, and ligand-induced secondary structural change of the human vitamin d receptor.
    Falsone SF; Kurkela R; Chiarandini G; Vihko P; Kungl AJ
    Biochem Biophys Res Commun; 2001 Aug; 285(5):1180-5. PubMed ID: 11478779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Methylene analogs of 1alpha-hydroxy-19-norvitamin D3: synthesis, biological activities and docking to the ligand binding domain of the rat vitamin D receptor.
    Grzywacz P; Plum LA; Sicinska W; Sicinski RR; Prahl JM; DeLuca HF
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):13-7. PubMed ID: 15225739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between vitamin D receptor and vitamin D ligands: two-dimensional alanine scanning mutational analysis.
    Choi M; Yamamoto K; Itoh T; Makishima M; Mangelsdorf DJ; Moras D; DeLuca HF; Yamada S
    Chem Biol; 2003 Mar; 10(3):261-70. PubMed ID: 12670540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand recognition by the vitamin D receptor.
    Choi M; Yamamoto K; Masuno H; Nakashima K; Taga T; Yamada S
    Bioorg Med Chem; 2001 Jul; 9(7):1721-30. PubMed ID: 11425573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants of ligand discrimination in the glutamate-binding pocket of the NMDA receptor.
    Laube B; Schemm R; Betz H
    Neuropharmacology; 2004 Dec; 47(7):994-1007. PubMed ID: 15555634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of human vitamin D receptor serine-182 by PKA suppresses 1,25(OH)2D3-dependent transactivation.
    Hsieh JC; Dang HT; Galligan MA; Whitfield GK; Haussler CA; Jurutka PW; Haussler MR
    Biochem Biophys Res Commun; 2004 Nov; 324(2):801-9. PubMed ID: 15474498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.