These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 10529392)

  • 1. Biophysical characterization of betabellin 16D: a beta-sandwich protein that forms narrow fibrils which associate into broad ribbons.
    Lim A; Makhov AM; Saderholm MJ; Griffith JD; Erickson BW
    Biochem Biophys Res Commun; 1999 Oct; 264(2):498-504. PubMed ID: 10529392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Betabellins 15D and 16D, de Novo designed beta-sandwich proteins that have amyloidogenic properties.
    Lim A; Makhov AM; Bond J; Inouye H; Connors LH; Griffith JD; Erickson BW; Kirschner DA; Costello CE
    J Struct Biol; 2000 Jun; 130(2-3):363-70. PubMed ID: 10940239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of betabellin-15D: a 64 residue beta sheet protein that forms long narrow multimeric fibrils.
    Lim A; Saderholm MJ; Makhov AM; Kroll M; Yan Y; Perera L; Griffith JD; Erickson BW
    Protein Sci; 1998 Jul; 7(7):1545-54. PubMed ID: 9684887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of betabellin 14D: disulfide-induced folding of a beta-sheet protein.
    Yan Y; Erickson BW
    Protein Sci; 1994 Jul; 3(7):1069-73. PubMed ID: 7920252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta(2)-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro.
    Kad NM; Thomson NH; Smith DP; Smith DA; Radford SE
    J Mol Biol; 2001 Oct; 313(3):559-71. PubMed ID: 11676539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random coils, beta-sheet ribbons, and alpha-helical fibers: one peptide adopting three different secondary structures at will.
    Pagel K; Wagner SC; Samedov K; von Berlepsch H; Böttcher C; Koksch B
    J Am Chem Soc; 2006 Feb; 128(7):2196-7. PubMed ID: 16478157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular organization of amyloid protofilament-like assembly of betabellin 15D: helical array of beta-sandwiches.
    Inouye H; Bond JE; Deverin SP; Lim A; Costello CE; Kirschner DA
    Biophys J; 2002 Sep; 83(3):1716-27. PubMed ID: 12202394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of peptide-amphiphile C12-Abeta(11-17) into nanofibrils.
    Deng M; Yu D; Hou Y; Wang Y
    J Phys Chem B; 2009 Jun; 113(25):8539-44. PubMed ID: 19534562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin.
    MacPhee CE; Dobson CM
    J Mol Biol; 2000 Apr; 297(5):1203-15. PubMed ID: 10764584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the core structure of lysozyme amyloid fibrils by proteolysis.
    Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A
    J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy migration in novel pH-triggered self-assembled beta-sheet ribbons.
    Kayser V; Turton DA; Aggeli A; Beevers A; Reid GD; Beddard GS
    J Am Chem Soc; 2004 Jan; 126(1):336-43. PubMed ID: 14709100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational prerequisites for formation of amyloid fibrils from histones.
    Munishkina LA; Fink AL; Uversky VN
    J Mol Biol; 2004 Sep; 342(4):1305-24. PubMed ID: 15351653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding induced assembly of polypeptide decorated gold nanoparticles.
    Aili D; Enander K; Rydberg J; Nesterenko I; Björefors F; Baltzer L; Liedberg B
    J Am Chem Soc; 2008 Apr; 130(17):5780-8. PubMed ID: 18380430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited proteolysis of bovine alpha-lactalbumin: isolation and characterization of protein domains.
    Polverino de Laureto P; Scaramella E; Frigo M; Wondrich FG; De Filippis V; Zambonin M; Fontana A
    Protein Sci; 1999 Nov; 8(11):2290-303. PubMed ID: 10595532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of a partially folded protein are decoupled from its mechanism of aggregation.
    Calloni G; Lendel C; Campioni S; Giannini S; Gliozzi A; Relini A; Vendruscolo M; Dobson CM; Salvatella X; Chiti F
    J Am Chem Soc; 2008 Oct; 130(39):13040-50. PubMed ID: 18767849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of the fibrous structure of an alpha-helix-forming peptide by sequence reversal.
    Kojima S; Kuriki Y; Yazaki K; Miura K
    Biochem Biophys Res Commun; 2005 Jun; 331(2):577-82. PubMed ID: 15850799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient intermediary states with high and low folding probabilities in the apparent two-state folding equilibrium of ACBP at low pH.
    Thomsen JK; Kragelund BB; Teilum K; Knudsen J; Poulsen FM
    J Mol Biol; 2002 May; 318(3):805-14. PubMed ID: 12054824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.