These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 10529523)

  • 1. Encephalization, adaptation and evolution of chiroptera: A statistical analysis with further evidence for bat monophyly.
    Lapointe F; Baron G; Legendre P
    Brain Behav Evol; 1999 Aug; 54(2):119-26. PubMed ID: 10529523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates).
    Pettigrew JD; Jamieson BG; Robson SK; Hall LS; McAnally KI; Cooper HM
    Philos Trans R Soc Lond B Biol Sci; 1989 Nov; 325(1229):489-559. PubMed ID: 2575767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the placenta and associated reproductive characters in bats.
    Carter AM; Mess A
    J Exp Zool B Mol Dev Evol; 2008 Jul; 310(5):428-49. PubMed ID: 18481267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evidence regarding the origin of echolocation and flight in bats.
    Teeling EC; Scally M; Kao DJ; Romagnoli ML; Springer MS; Stanhope MJ
    Nature; 2000 Jan; 403(6766):188-92. PubMed ID: 10646602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base compositional bias and phylogenetic analyses: a test of the "flying DNA" hypothesis.
    Van Den Bussche RA; Baker RJ; Huelsenbeck JP; Hillis DM
    Mol Phylogenet Evol; 1998 Dec; 10(3):408-16. PubMed ID: 10051393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats.
    Teeling EC; Madsen O; Van den Bussche RA; de Jong WW; Stanhope MJ; Springer MS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1431-6. PubMed ID: 11805285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly.
    Stanhope MJ; Czelusniak J; Si JS; Nickerson J; Goodman M
    Mol Phylogenet Evol; 1992 Jun; 1(2):148-60. PubMed ID: 1342928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matching behavioral evolution to brain morphology.
    Legendre P; Lapointe FJ
    Brain Behav Evol; 1995; 45(2):110-21. PubMed ID: 7749726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.
    Simmons NB; Seymour KL; Habersetzer J; Gunnell GF
    Nature; 2008 Feb; 451(7180):818-21. PubMed ID: 18270539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative analysis of brain size in relation to foraging ecology and phylogeny in the Chiroptera.
    Hutcheon JM; Kirsch JA; Garland T
    Brain Behav Evol; 2002; 60(3):165-80. PubMed ID: 12417821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary change in the brain size of bats.
    Yao L; Brown JP; Stampanoni M; Marone F; Isler K; Martin RD
    Brain Behav Evol; 2012; 80(1):15-25. PubMed ID: 22739064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (chiroptera).
    Eick GN; Jacobs DS; Matthee CA
    Mol Biol Evol; 2005 Sep; 22(9):1869-86. PubMed ID: 15930153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny through brain traits: more characters for the analysis of mammalian evolution.
    Johnson JI; Kirsch JA; Reep RL; Switzer RC
    Brain Behav Evol; 1994; 43(6):319-47. PubMed ID: 8044673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base-compositional biases and the bat problem. III. The questions of microchiropteran monophyly.
    Hutcheon JM; Kirsch JA; Pettigrew JD
    Philos Trans R Soc Lond B Biol Sci; 1998 Apr; 353(1368):607-17. PubMed ID: 9602535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene structure and evolution of transthyretin in the order Chiroptera.
    Khwanmunee J; Leelawatwattana L; Prapunpoj P
    Genetica; 2016 Feb; 144(1):71-83. PubMed ID: 26681450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Support for the allotonic frequency hypothesis in an insectivorous bat community.
    Schoeman MC; Jacobs DS
    Oecologia; 2003 Jan; 134(1):154-62. PubMed ID: 12647192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of the relationships of bats to other eutherian mammals.
    Pumo DE; Finamore PS; Franek WR; Phillips CJ; Tarzami S; Balzarano D
    J Mol Evol; 1998 Dec; 47(6):709-17. PubMed ID: 9847413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenomic analyses elucidate the evolutionary relationships of bats.
    Tsagkogeorga G; Parker J; Stupka E; Cotton JA; Rossiter SJ
    Curr Biol; 2013 Nov; 23(22):2262-2267. PubMed ID: 24184098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive cranial and cervical innervation of wing muscles: new evidence for bat monophyly.
    Thewissen JG; Babcock SK
    Science; 1991 Feb; 251(4996):934-6. PubMed ID: 2000493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connecting behaviour and performance: the evolution of biting behaviour and bite performance in bats.
    Santana SE; Dumont ER
    J Evol Biol; 2009 Nov; 22(11):2131-45. PubMed ID: 19732259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.