These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 10529648)

  • 1. Observations on simultaneous perilymphatic motions and cochlear microphonics suppression.
    Haberland E; Neumann HJ
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):268-74. PubMed ID: 10529648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission of cerebrospinal fluid pressure changes to the inner ear and its effect on cochlear microphonics.
    Yoshida M; Uemura T
    Eur Arch Otorhinolaryngol; 1991; 248(3):139-43. PubMed ID: 2029392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of increased perilymphatic pressure on endocochlear potential.
    Nakashima T; Ito A
    Ann Otol Rhinol Laryngol; 1981; 90(3 Pt 1):264-6. PubMed ID: 7271132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume flow rate of perilymph in the guinea-pig cochlea.
    Ohyama K; Salt AN; Thalmann R
    Hear Res; 1988 Sep; 35(2-3):119-29. PubMed ID: 3198505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A parametric study of cochlear input impedance.
    Puria S; Allen JB
    J Acoust Soc Am; 1991 Jan; 89(1):287-309. PubMed ID: 2002170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of elevated potassium concentration in the perilymph on the nonlinearity of cochlear microphonics in the guinea-pig cochlea.
    Avan P; Legouix JP
    Hear Res; 1988 Sep; 35(2-3):159-64. PubMed ID: 3198508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Hear Res; 1992 Nov; 63(1-2):19-25. PubMed ID: 1464569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of perilymphatic oxygen tension in guinea pigs exposed to loud sound.
    Haupt H; Scheibe F; Ludwig C; Petzold D
    Eur Arch Otorhinolaryngol; 1991; 248(7):413-6. PubMed ID: 1747251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concomitant changes in the acoustic impedance and the cochlear microphonic potentials during twitch contractions of the middle ear muscles in cats.
    Freeman S; Zaaroura S; Sohmer H
    Arch Otorhinolaryngol; 1988; 245(5):311-5. PubMed ID: 3245804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early alterations of cochlear function in experimental perilymph fistulas.
    Böhmer A
    Laryngoscope; 1990 Apr; 100(4):389-94. PubMed ID: 2319888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Displacements of the organ of Corti by gel injections into the cochlear apex.
    Salt AN; Brown DJ; Hartsock JJ; Plontke SK
    Hear Res; 2009 Apr; 250(1-2):63-75. PubMed ID: 19217935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of perilymphatic pressure, sodium nitroprusside, and bupivacaine on cochlear fluid pH of guinea pigs.
    Suzuki M; Kotani R
    Acta Otolaryngol; 2015; 135(12):1219-24. PubMed ID: 26327567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of dopamine D2 receptors in the guinea pig cochlea.
    Wang L; Li J; Yu L; Li X
    Acta Otolaryngol; 2014 Jul; 134(7):738-43. PubMed ID: 24807851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency modulation of compound action potential in experimental perilymphatic fistula and endolymphatic hydrops.
    Tono T; Morizono T
    Hear Res; 1992 Jun; 60(1):27-33. PubMed ID: 1500374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani.
    Bobbin RP; Salt AN
    Hear Res; 2005 Jul; 205(1-2):35-43. PubMed ID: 15953513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of pressure on cochlear microphonics in experimentally induced hydropic ears in the guinea pig.
    Kawase T; Kobayashi T; Takasaka T; Shinkawa H
    Eur Arch Otorhinolaryngol; 1990; 247(6):364-7. PubMed ID: 2278702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perilymph osmolality modulates cochlear function.
    Choi CH; Oghalai JS
    Laryngoscope; 2008 Sep; 118(9):1621-9. PubMed ID: 18607303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear neurons: frequency selectivity altered by perilymph removal.
    Robertson D
    Science; 1974 Oct; 186(4159):153-5. PubMed ID: 4412495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for introducing non-silencing siRNA into the guinea pig cochlea in vivo.
    Sellick P; Layton MG; Rodger J; Robertson D
    J Neurosci Methods; 2008 Jan; 167(2):237-45. PubMed ID: 17945347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of experimentally increased perilymphatic pressure on click-evoked otoacoustic emissions in guinea pigs.
    Chang SO; Noh KT; Min YG; Yu WS; Lee DW
    Acta Otolaryngol; 1995 Mar; 115(2):173-7. PubMed ID: 7610798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.