These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 10529648)

  • 21. [Effects of lowering perilymph calcium concentration on various cochlear potentials].
    Wang J; Dong WJ; Chen JS; Liu JL
    Sheng Li Xue Bao; 1994 Aug; 46(4):327-32. PubMed ID: 7973823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relations between cochlear fatigue and the asymmetrical nonlinearity of the cochlear microphonics.
    Legouix JP; Pierson A; Minot JF
    Audiology; 1980; 19(3):263-76. PubMed ID: 7369935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perilymph Kinetics of FITC-Dextran Reveals Homeostasis Dominated by the Cochlear Aqueduct and Cerebrospinal Fluid.
    Salt AN; Gill RM; Hartsock JJ
    J Assoc Res Otolaryngol; 2015 Jun; 16(3):357-71. PubMed ID: 25801074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Blockage of cochlear aqueduct for examination of perilymph (guinea pig) (author's transl)].
    Bergmann K; Haupt H; Scheibe F; Rogge I
    Arch Otorhinolaryngol; 1979; 224(3-4):257-65. PubMed ID: 526188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of cerebrospinal fluid pressure on perilymphatic flow in the opened cochlea.
    Salt AN; Stopp PE
    Acta Otolaryngol; 1979; 88(3-4):198-202. PubMed ID: 495071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of altered middle ear pressure on cochlear microphonics.
    Ohmura M; Satoh H; Honjo I
    Acta Otolaryngol; 1987; 104(3-4):255-60. PubMed ID: 3673556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of argon laser stapedotomy on cochlear potentials. I: Alteration of cochlear microphonics (CM).
    Vollrath M; Schreiner C
    Acta Otolaryngol Suppl; 1982; 385():1-31. PubMed ID: 6289599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of activity in starling cochlear ganglion units by middle-ear muscle contractions, perilymph movements and lagena stimuli.
    Oeckinghaus H
    J Comp Physiol A; 1985 Nov; 157(5):643-55. PubMed ID: 3837105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of perilymphatic fistula on distortion product otoacoustic emissions in guinea pigs].
    Wang L; Jiang W; Jiang P
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Jun; 32(3):160-2. PubMed ID: 10743156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of perilymph volume adjustments on cochlear blood flow in the guinea pig.
    McLaren GM; Dengerink HA; Hellström PA; Wright JW
    Acta Otolaryngol; 1991; 111(1):94-100. PubMed ID: 2014761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validity of cochlear microphonics at high sound pressure levels as an important clinical aspect.
    Teschner M; Lenarz T; Battmer RD
    ORL J Otorhinolaryngol Relat Spec; 2012; 74(1):38-41. PubMed ID: 22286860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of increasing perilymph calcium levels on various cochlear potentials].
    Hu L; Dong W; Chen J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 May; 13(2):128-30. PubMed ID: 10074232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of perilymphatic fistula in sudden hearing loss: an animal model.
    Oshiro EM; Shelton C; Lusted HS
    Ann Otol Rhinol Laryngol; 1989 Jul; 98(7 Pt 1):491-5. PubMed ID: 2751207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A; van Maarseveen JT; Scarfone E; Ulfendahl M; Flock B; Flock A
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological monitoring of hearing function during cochlear perilymphatic perfusions.
    San Román J; Carricondo F; Iglesias-Moreno MC; Martín-Villares C; Poch-Broto J; Gil-Loyzaga P
    Acta Otolaryngol; 2012 Sep; 132(9):916-22. PubMed ID: 22667457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear aspects of infrasonic pressure transfer into the perilymph.
    Krukowski B; Carlborg B; Densert O
    Hear Res; 1980 Jun; 2(3-4):207-12. PubMed ID: 7410228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical implications of experiments on alteration of the labyrinthine fluid pressures.
    Allen GW
    Otolaryngol Clin North Am; 1983 Feb; 16(1):3-19. PubMed ID: 6343957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human cochlear hydrodynamics: A high-resolution μCT-based finite element study.
    De Paolis A; Watanabe H; Nelson JT; Bikson M; Packer M; Cardoso L
    J Biomech; 2017 Jan; 50():209-216. PubMed ID: 27855986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The physiological influence of sound on the cochlea metabolism.
    Lotz P; Jakobi H; Kuhl KD; Haberland EJ
    Acta Otolaryngol; 1981; 91(5-6):445-50. PubMed ID: 7270115
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.