These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10529652)

  • 1. 3D-finite element model of the human cochlea including fluid-structure couplings.
    Böhnke F; Arnold W
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):305-10. PubMed ID: 10529652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of coiling on the micromechanics of the mammalian cochlea.
    Cai H; Manoussaki D; Chadwick R
    J R Soc Interface; 2005 Sep; 2(4):341-8. PubMed ID: 16849192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A wave finite element analysis of the passive cochlea.
    Elliott SJ; Ni G; Mace BR; Lineton B
    J Acoust Soc Am; 2013 Mar; 133(3):1535-45. PubMed ID: 23464024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear.
    Wang X; Keefe DH; Gan RZ
    J Acoust Soc Am; 2016 Apr; 139(4):1735. PubMed ID: 27106321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward three-dimensional analysis of cochlear structure.
    Steele CR
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):238-51. PubMed ID: 10529645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Finite Element Modeling of Blast Wave Transmission from the External Ear to Cochlea.
    Brown MA; Ji XD; Gan RZ
    Ann Biomed Eng; 2021 Feb; 49(2):757-768. PubMed ID: 32926269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone conduction in a three-dimensional model of the cochlea.
    Bohnke F; Arnold W
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):393-6. PubMed ID: 17065835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An elemental approach to modelling the mechanics of the cochlea.
    Elliott SJ; Ni G
    Hear Res; 2018 Mar; 360():14-24. PubMed ID: 29174619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the fluid-structure interaction in the cochlea.
    Rapson MJ; Hamilton TJ; Tapson JC
    J Acoust Soc Am; 2014 Jul; 136(1):284-300. PubMed ID: 24993214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflection of retrograde waves within the cochlea and at the stapes.
    Shera CA; Zweig G
    J Acoust Soc Am; 1991 Mar; 89(3):1290-305. PubMed ID: 2030216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-channel adaptive nonlinear filtering structure realizing some properties of the hearing system.
    Stasiunas A; Verikas A; Kemesis P; Bacauskiene M; Miliauskas R; Stasiuniene N; Malmqvist K
    Comput Biol Med; 2005 Jul; 35(6):495-510. PubMed ID: 15780861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human cochlear hydrodynamics: A high-resolution μCT-based finite element study.
    De Paolis A; Watanabe H; Nelson JT; Bikson M; Packer M; Cardoso L
    J Biomech; 2017 Jan; 50():209-216. PubMed ID: 27855986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple scale analysis of the spirally coiled cochlea.
    Loh CH
    J Acoust Soc Am; 1983 Jul; 74(1):94-103. PubMed ID: 6886202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracochlear pressure and derived quantities from a three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    J Acoust Soc Am; 2007 Aug; 122(2):952-66. PubMed ID: 17672644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.