These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 105297)

  • 1. A peptide resembling COOH-terminal tetrapeptide amide of gastrin from a new gastrointestinal endocrine cell type.
    Larsson L; Rehfeld JF
    Nature; 1979 Feb; 277(5697):575-8. PubMed ID: 105297
    [No Abstract]   [Full Text] [Related]  

  • 2. The predominating molecular form of gastrin and cholecystokinin in the gut is a small peptide corresponding to their COOH-terminal tetrapeptide amide.
    Rehfeld JF; Larsson LI
    Acta Physiol Scand; 1979 Jan; 105(1):117-9. PubMed ID: 369296
    [No Abstract]   [Full Text] [Related]  

  • 3. Localisation of intestinal gastrin in a distinct endocrine cell type.
    Buchan AM; Polak JM; Solcia E; Pearse AG
    Nature; 1979 Jan; 277(5692):138-40. PubMed ID: 366436
    [No Abstract]   [Full Text] [Related]  

  • 4. Cholecystokinin in pig plasma: release of components devoid of a bioactive COOH-terminus.
    Cantor P; Rehfeld JF
    Am J Physiol; 1989 Jan; 256(1 Pt 1):G53-61. PubMed ID: 2912150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a common evolutionary origin of gastrin and cholecystokinin.
    Larsson LI; Rehfeld JF
    Nature; 1977 Sep; 269(5626):335-8. PubMed ID: 71661
    [No Abstract]   [Full Text] [Related]  

  • 6. Complementary peptide to the carboxyl-terminal tetrapeptide of gastrin.
    McGuigan JE; Campbell-Thompson M
    Gastroenterology; 1992 Sep; 103(3):749-58. PubMed ID: 1499924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of enteroendocrine cells with implications for their origin: a study of the cholecystokinin and gastrin subpopulations combining tritiated thymidine labelling with immunocytochemistry in the mouse.
    Thompson EM; Price YE; Wright NA
    Gut; 1990 Apr; 31(4):406-11. PubMed ID: 2186981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological variation of immunoreactive cells positive to cholecystokinin 33 (10-20) and gastrin 34 (1-15) in human duodenum.
    Tsumuraya M; Nakajima T; Morinaga S; Shimosato Y; Suzuki M; Yamaguchi K
    Cell Tissue Res; 1986; 244(3):519-25. PubMed ID: 2424608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immunocytochemical and ultrastructural study of endocrine cells in the gut of a teleost fish, Sparus auratus L.
    Elbal MT; Agulleiro B
    Gen Comp Endocrinol; 1986 Dec; 64(3):339-54. PubMed ID: 2433180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a high affinity of Phaseolus vulgaris agglutinin (PHA) with gastrin-secreting cells.
    Hsu SM; Raine L
    Am J Clin Pathol; 1982 Apr; 77(4):396-400. PubMed ID: 7041616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships of peptide fragments of gastrin and cholecystokinin.
    Kaminski DL; Ruwart MJ; Jellinek M
    Am J Physiol; 1977 Oct; 233(4):E286-92. PubMed ID: 199074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the biologically active structures of cholecystokinin, little gastrin, and enkephalin in the gastrointestinal system.
    Pincus MR; Carty RP; Chen J; Lubowsky J; Avitable M; Shah D; Scheraga HA; Murphy RB
    Proc Natl Acad Sci U S A; 1987 Jul; 84(14):4821-5. PubMed ID: 3037525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic clearance of gastrin and cholecystokinin peptides.
    Doyle JW; Wolfe MM; McGuigan JE
    Gastroenterology; 1984 Jul; 87(1):60-8. PubMed ID: 6724275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Gastrin cell population in gastric and duodenal mucosa of dogs (author's transl)].
    Takahashi T; Shimazu H; Tani M; Kato Y
    Nihon Shokakibyo Gakkai Zasshi; 1977 Oct; 74(10):1362-9. PubMed ID: 592514
    [No Abstract]   [Full Text] [Related]  

  • 15. Gastrins in tissue. Concentration and component pattern in gastric, duodenal, and jejunal mucosa of normal human subjects and patients with duodenal ulcer.
    Malstrom J; Stadil F; Rehfeld JF
    Gastroenterology; 1976 May; 70(5 PT.1):697-703. PubMed ID: 944152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel activity of angiotensin-converting enzyme. Hydrolysis of cholecystokinin and gastrin analogues with release of the amidated C-terminal dipeptide.
    Dubreuil P; Fulcrand P; Rodriguez M; Fulcrand H; Laur J; Martinez J
    Biochem J; 1989 Aug; 262(1):125-30. PubMed ID: 2554881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular localization of gastrin in the canine antral mucosa by the immunoenzyme technique.
    Lomský R; Kubes L; Jirásek K
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1972; 15(5):571-6. PubMed ID: 4134762
    [No Abstract]   [Full Text] [Related]  

  • 18. Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas.
    Jensen RT; Lemp GF; Gardner JD
    J Biol Chem; 1982 May; 257(10):5554-9. PubMed ID: 6175629
    [No Abstract]   [Full Text] [Related]  

  • 19. Gastric leptin.
    Lewin MJ; Bado A
    Microsc Res Tech; 2001 Jun; 53(5):372-6. PubMed ID: 11376498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light and electron microscopic identification of several types of endocrine cells in the gastrointestinal mucosa of the cat.
    Vassallo G; Solcia E; Capella C
    Z Zellforsch Mikrosk Anat; 1969; 98(3):333-56. PubMed ID: 4900453
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.