These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 10529804)

  • 1. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes.
    Gelfand MS; Mironov AA; Jomantas J; Kozlov YI; Perumov DA
    Trends Genet; 1999 Nov; 15(11):439-42. PubMed ID: 10529804
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation.
    Vitreschak AG; Rodionov DA; Mironov AA; Gelfand MS
    Nucleic Acids Res; 2002 Jul; 30(14):3141-51. PubMed ID: 12136096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Riboflavin biosynthetic genes in Bacillus amyloliquefaciens: primary structure, organization and regulation of activity].
    Gusarov II; Kreneva RA; Podcharniaev DA; Iomantas IuV; Abalakina EG; Stoĭnova NV; Perumov DA; Kozlov IuI
    Mol Biol (Mosk); 1997; 31(3):446-53. PubMed ID: 9297088
    [No Abstract]   [Full Text] [Related]  

  • 4. Do mRNAs act as direct sensors of small molecules to control their expression?
    Stormo GD; Ji Y
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9465-7. PubMed ID: 11504932
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch?
    Rodionov DA; Vitreschak AG; Mironov AA; Gelfand MS
    Nucleic Acids Res; 2003 Dec; 31(23):6748-57. PubMed ID: 14627808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression.
    Diwa A; Bricker AL; Jain C; Belasco JG
    Genes Dev; 2000 May; 14(10):1249-60. PubMed ID: 10817759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Search for alternative secondary structures of RNA, regulating expression of bacterial genes].
    Liubetskaia EV; Leont'ev LA; Gel'fand MS; Liubetskiĭ VA
    Mol Biol (Mosk); 2003; 37(5):834-42. PubMed ID: 14593920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboflavin synthesis genes ribE, ribB, ribH, ribA reside in the lux operon of Photobacterium leiognathi.
    Lin JW; Chao YF; Weng SF
    Biochem Biophys Res Commun; 2001 Jun; 284(3):587-95. PubMed ID: 11396941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Modeling evolution of regulatory signals for gene expression in bacteria].
    Gorbunov KIu; Liubetskaia EV; Asarin EA; Liubetskiĭ VA
    Mol Biol (Mosk); 2009; 43(3):527-41. PubMed ID: 19548539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria.
    Mironov AS; Gusarov I; Rafikov R; Lopez LE; Shatalin K; Kreneva RA; Perumov DA; Nudler E
    Cell; 2002 Nov; 111(5):747-56. PubMed ID: 12464185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region.
    Kil YV; Mironov VN; Gorishin IYu ; Kreneva RA; Perumov DA
    Mol Gen Genet; 1992 Jun; 233(3):483-6. PubMed ID: 1620102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense micF RNA and 5'-UTR of the target ompF RNA: phylogenetic conservation of primary and secondary structures.
    Delihas N
    Nucleic Acids Symp Ser; 1997; (36):33-5. PubMed ID: 9478198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic analysis of tmRNA genes within a bacterial subgroup reveals a specific structural signature.
    Felden B; Massire C; Westhof E; Atkins JF; Gesteland RF
    Nucleic Acids Res; 2001 Apr; 29(7):1602-7. PubMed ID: 11266563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K; Yanagi H; Yura T
    Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.
    Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D
    J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.
    Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M
    FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria.
    Miranda-Ríos J; Navarro M; Soberón M
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9736-41. PubMed ID: 11470904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mRNA-based thermosensor controls expression of rhizobial heat shock genes.
    Nocker A; Hausherr T; Balsiger S; Krstulovic NP; Hennecke H; Narberhaus F
    Nucleic Acids Res; 2001 Dec; 29(23):4800-7. PubMed ID: 11726689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNAs.
    Massire C; Jaeger L; Westhof E
    RNA; 1997 Jun; 3(6):553-6. PubMed ID: 9174090
    [No Abstract]   [Full Text] [Related]  

  • 20. Sampled ensemble neutrality as a feature to classify potential structured RNAs.
    Pei S; Anthony JS; Meyer MM
    BMC Genomics; 2015 Feb; 16(1):35. PubMed ID: 25649229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.