These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10529921)

  • 1. Joint surface modeling with thin-plate splines.
    Boyd SK; Ronsky JL; Lichti DD; Salkauskas K; Chapman MA
    J Biomech Eng; 1999 Oct; 121(5):525-32. PubMed ID: 10529921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise measurement of cat patellofemoral joint surface geometry with multistation digital photogrammetry.
    Ronsky JL; Boyd SK; Lichti DD; Chapman MA; Salkauskas K
    J Biomech Eng; 1999 Apr; 121(2):196-205. PubMed ID: 10211454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bony and cartilaginous anatomy of the patellofemoral joint.
    Tecklenburg K; Dejour D; Hoser C; Fink C
    Knee Surg Sports Traumatol Arthrosc; 2006 Mar; 14(3):235-40. PubMed ID: 16254736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry.
    Ateshian GA; Soslowsky LJ; Mow VC
    J Biomech; 1991; 24(8):761-76. PubMed ID: 1918099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of basis functions in modelling joint articular surfaces: application to the knee joint.
    Dhaher1abc YY; Delp SL; Rymer WZ
    J Biomech; 2000 Jul; 33(7):901-7. PubMed ID: 10831766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weight-bearing MRI of patellofemoral joint cartilage contact area.
    Gold GE; Besier TF; Draper CE; Asakawa DS; Delp SL; Beaupre GS
    J Magn Reson Imaging; 2004 Sep; 20(3):526-30. PubMed ID: 15332263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling: an alternative approach for investigating patellofemoral mechanics.
    Elias JJ; Cosgarea AJ
    Sports Med Arthrosc Rev; 2007 Jun; 15(2):89-94. PubMed ID: 17505324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods.
    Ateshian GA; Kwak SD; Soslowsky LJ; Mow VC
    J Biomech; 1994 Jan; 27(1):111-24. PubMed ID: 7508940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomy of the human patellofemoral joint articular cartilage: surface curvature analysis.
    Kwak SD; Colman WW; Ateshian GA; Grelsamer RP; Henry JH; Mow VC
    J Orthop Res; 1997 May; 15(3):468-72. PubMed ID: 9246097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.
    Liukkonen MK; Mononen ME; Tanska P; Saarakkala S; Nieminen MT; Korhonen RK
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1453-1463. PubMed ID: 28895760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evaluation of theoretical contact forces in the cat patellofemoral joint.
    Hasler EM; Herzog W; Ronsky JL
    J Biomech; 1996 Sep; 29(9):1201-5. PubMed ID: 8872278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quasi-static three-dimensional, mathematical, three-body segment model of the canine knee.
    Shahar R; Banks-Sills L
    J Biomech; 2004 Dec; 37(12):1849-59. PubMed ID: 15519593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A human knee articulate mathematical model on femur-tibia-patella 3-segmetents].
    Wang X; Bai T; Tumer ST; Akkas N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Dec; 15(4):360-2, 368. PubMed ID: 12552780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models.
    Mattei L; Campioni E; Accardi MA; Dini D
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An articular cartilage contact model based on real surface geometry.
    Han SK; Federico S; Epstein M; Herzog W
    J Biomech; 2005 Jan; 38(1):179-84. PubMed ID: 15519355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The accuracy of joint surface models constructed from data obtained with an electromagnetic tracking device.
    van Ruijven LJ; Beek M; Donker E; van Eijden TM
    J Biomech; 2000 Aug; 33(8):1023-8. PubMed ID: 10828333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements.
    Cohen ZA; McCarthy DM; Kwak SD; Legrand P; Fogarasi F; Ciaccio EJ; Ateshian GA
    Osteoarthritis Cartilage; 1999 Jan; 7(1):95-109. PubMed ID: 10367018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo assessment of patellofemoral joint contact area in individuals who are pain free.
    Salsich GB; Ward SR; Terk MR; Powers CM
    Clin Orthop Relat Res; 2003 Dec; (417):277-84. PubMed ID: 14646727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.