BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10530008)

  • 1. ESR characterization and metallokinetic analysis of Cr(V) in the blood of rats given carcinogen chromate(VI) compounds.
    Sakurai H; Takechi K; Tsuboi H; Yasui H
    J Inorg Biochem; 1999 Jul; 76(1):71-80. PubMed ID: 10530008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-dependent metallokinetics of antidiabetic vanadyl-picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics.
    Yasui H; Tamura A; Takino T; Sakurai H
    J Inorg Biochem; 2002 Jul; 91(1):327-38. PubMed ID: 12121792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallokinetic analysis of disposition of vanadyl complexes as insulin-mimetics in rats using BCM-ESR method.
    Yasui H; Takechi K; Sakurai H
    J Inorg Biochem; 2000 Feb; 78(3):185-96. PubMed ID: 10805174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of carcinogenic chromium(VI) on the skin of living rats.
    Liu KJ; Mäder K; Shi X; Swartz HM
    Magn Reson Med; 1997 Oct; 38(4):524-6. PubMed ID: 9324316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of chromium(V) in the mechanism of chromate-induced oxidative DNA damage and cancer.
    Sugden KD; Stearns DM
    J Environ Pathol Toxicol Oncol; 2000; 19(3):215-30. PubMed ID: 10983888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-electron reduction of carcinogen chromate by microsomes, mitochondria, and Escherichia coli: identification of Cr(V) and .OH radical.
    Shi XL; Dalal NS; Vallyathan V
    Arch Biochem Biophys; 1991 Nov; 290(2):381-6. PubMed ID: 1656878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive activation of hexavalent chromium by human lung epithelial cells: generation of Cr(V) and Cr(V)-thiol species.
    Borthiry GR; Antholine WE; Myers JM; Myers CR
    J Inorg Biochem; 2008 Jul; 102(7):1449-62. PubMed ID: 18279960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carcinogenic chromium(VI)-induced protein oxidation and lipid peroxidation: implications in DNA-protein crosslinking.
    Mattagajasingh SN; Misra BR; Misra HP
    J Appl Toxicol; 2008 Nov; 28(8):987-97. PubMed ID: 18615841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetic analysis of free radicals by in vivo BCM (Blood Circulation Monitoring)-ESR method.
    Takechi K; Tamura H; Yamaoka K; Sakurai H
    Free Radic Res; 1997 Jun; 26(6):483-96. PubMed ID: 9212342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative activation of the human carcinogen chromate by arsenite: a model for synergistic metal activation leading to oxidative DNA damage.
    Sugden KD; Rigby KM; Martin BD
    Toxicol In Vitro; 2004 Dec; 18(6):741-8. PubMed ID: 15465638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium(V) is produced upon reduction of chromate by mitochondrial electron transport chain complexes.
    Rossi SC; Wetterhahn KE
    Carcinogenesis; 1989 May; 10(5):913-20. PubMed ID: 2539917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of superoxide radical in chromium (VI)-generated hydroxyl radical: the Cr(VI) Haber-Weiss cycle.
    Shi XL; Dalal NS
    Arch Biochem Biophys; 1992 Jan; 292(1):323-7. PubMed ID: 1309299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency EPR study of chromium(V) formation from chromium(VI) in living plants.
    Liu KJ; Jiang J; Shi X; Gabrys H; Walczak T; Swartz HM
    Biochem Biophys Res Commun; 1995 Jan; 206(3):829-34. PubMed ID: 7832793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinnokinetic analyses of blood disposition and biliary excretion of nitric oxide (NO)-Fe(II)-N-(dithiocarboxy)sarcosine complex in rats: BCM-ESR and BEM-ESR studies.
    Yasui H; Fujii S; Yoshimura T; Sakurai H
    Free Radic Res; 2004 Oct; 38(10):1061-72. PubMed ID: 15512794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct evidence for hydroxyl radical-induced damage to nucleic acids by chromium(VI)-derived species: implications for chromium carcinogenesis.
    Molyneux MJ; Davies MJ
    Carcinogenesis; 1995 Apr; 16(4):875-82. PubMed ID: 7537182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium oxidation state imaging in mammalian cells exposed in vitro to soluble or particulate chromate compounds.
    Ortega R; Fayard B; Salomé M; Devès G; Susini J
    Chem Res Toxicol; 2005 Oct; 18(10):1512-9. PubMed ID: 16533014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of paramagnetic chromium in liver of mice treated with dichromate (VI).
    Ueno S; Susa N; Furukawa Y; Sugiyama M
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):165-71. PubMed ID: 8545823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and structural characterization of oxo-chromium(V)-sugar complexes by electron paramagnetic resonance.
    Sala LF; González JC; García SI; Frascaroli MI; Van Doorslaer S
    Adv Carbohydr Chem Biochem; 2011; 66():69-120. PubMed ID: 22123188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system.
    Mangiameli MF; González JC; Bellú S; Bertoni F; Sala LF
    Dalton Trans; 2014 Jun; 43(24):9242-54. PubMed ID: 24816781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics.
    Puzon GJ; Roberts AG; Kramer DM; Xun L
    Environ Sci Technol; 2005 Apr; 39(8):2811-7. PubMed ID: 15884380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.