These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 10530011)

  • 1. A composite model of the auditory periphery for simulating responses to complex sounds.
    Robert A; Eriksson JL
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):1852-64. PubMed ID: 10530011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.
    Nam H; Guinan JJ
    Hear Res; 2016 Nov; 341():66-78. PubMed ID: 27550413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise.
    Chintanpalli A; Jennings SG; Heinz MG; Strickland EA
    J Assoc Res Otolaryngol; 2012 Apr; 13(2):219-35. PubMed ID: 22286536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cascades of two-pole-two-zero asymmetric resonators are good models of peripheral auditory function.
    Lyon RF
    J Acoust Soc Am; 2011 Dec; 130(6):3893-904. PubMed ID: 22225045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary noise responses in a nonlinear model of cochlear mechanics: iterative solutions in the frequency domain.
    Liu YW
    J Acoust Soc Am; 2014 Oct; 136(4):1788-96. PubMed ID: 25324080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses.
    Smalt CJ; Heinz MG; Strickland EA
    J Assoc Res Otolaryngol; 2014 Apr; 15(2):159-73. PubMed ID: 24306278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The temporal representation of speech in a nonlinear model of the guinea pig cochlea.
    Holmes SD; Sumner CJ; O'Mard LP; Meddis R
    J Acoust Soc Am; 2004 Dec; 116(6):3534-45. PubMed ID: 15658705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates.
    Heinz MG; Colburn HS; Carney LH
    J Acoust Soc Am; 2002 Feb; 111(2):996-1011. PubMed ID: 11863202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the quality of enhanced wideband speech with a cochlear model.
    Wirtzfeld MR; Pourmand N; Parsa V; Bruce IC
    J Acoust Soc Am; 2017 Sep; 142(3):EL319. PubMed ID: 28964067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide.
    Tan Q; Carney LH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2007-20. PubMed ID: 14587601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones.
    Kawase T; Liberman MC
    J Neurophysiol; 1993 Dec; 70(6):2519-32. PubMed ID: 8120596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational model of afferent neural activity from the cochlea to the dorsal acoustic stria.
    Pont MJ; Damper RI
    J Acoust Soc Am; 1991 Mar; 89(3):1213-28. PubMed ID: 2030211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking.
    Altoè A; Charaziak KK; Dewey JB; Moleti A; Sisto R; Oghalai JS; Shera CA
    J Assoc Res Otolaryngol; 2021 Dec; 22(6):623-640. PubMed ID: 34677710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling signal propagation in the human cochlea.
    Neely ST; Rasetshwane DM
    J Acoust Soc Am; 2017 Oct; 142(4):2155. PubMed ID: 29092611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling of cochlear mechanics.
    Neely ST
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):345-52. PubMed ID: 4031241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A realizable cochlear model using feedback from motile outer hair cells.
    Geisler CD
    Hear Res; 1993 Aug; 68(2):253-62. PubMed ID: 8407611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.